
An Empirical Evaluation of Evolutionary
Algorithms for Unit Test Suite Generation

José Camposa,∗, Yan Gea, Nasser Albuniana, Gordon Frasera,b, Marcelo Elerc,
Andrea Arcurid,e

aDepartment of Computer Science, The University of Sheffield, UK
bChair of Software Engineering II, University of Passau, Germany

cUniversity of São Paulo, Brazil
dWesterdals Oslo School of Arts, Communication and Technology, Norway

eUniversity of Luxembourg, Luxembourg

Abstract

Context: Evolutionary algorithms have been shown to be effective at gener-

ating unit test suites optimised for code coverage. While many specific aspects

of these algorithms have been evaluated in detail (e.g., test length and different

kinds of techniques aimed at improving performance, like seeding), the influ-

ence of the choice of evolutionary algorithm has to date seen less attention in

the literature.

Objective: Since it is theoretically impossible to design an algorithm that is

the best on all possible problems, a common approach in software engineering

problems is to first try the most common algorithm, a Genetic Algorithm, and

only afterwards try to refine it or compare it with other algorithms to see if any

of them is more suited for the addressed problem. The objective of this paper

is to perform this analysis, in order to shed light on the influence of the search

algorithm applied for unit test generation.

Method: We empirically evaluate thirteen different evolutionary algorithms

and two random approaches on a selection of non-trivial open source classes.

All algorithms are implemented in the EvoSuite test generation tool, which

∗Corresponding author
Email addresses: jose.campos@sheffield.ac.uk (José Campos), yge5@sheffield.ac.uk

(Yan Ge), nmalbunian1@sheffield.ac.uk (Nasser Albunian), gordon.fraser@uni-passau.de
(Gordon Fraser), marceloeler@usp.br (Marcelo Eler), arcand@westerdals.no (Andrea
Arcuri)

Preprint submitted to Elsevier June 29, 2018

includes recent optimisations such as the use of an archive during the search

and optimisation for multiple coverage criteria.

Results: Our study shows that the use of a test archive makes evolutionary

algorithms clearly better than random testing, and it confirms that the Dy-

naMOSA many-objective search algorithm is the most effective algorithm for

unit test generation.

Conclusions: Our results show that the choice of algorithm can have a sub-

stantial influence on the performance of whole test suite optimisation. Although

we can make a recommendation on which algorithm to use in practice, no algo-

rithm is clearly superior in all cases, suggesting future work on improved search

algorithms for unit test generation.

Keywords: Evolutionary algorithms, Test suite generation, Empirical study

1. Introduction1

Search-based testing has been successfully applied to generating unit test2

suites optimised for code coverage on object-oriented classes. A popular ap-3

proach is to use evolutionary algorithms where the individuals of the search4

population are whole test suites, and the optimisation goal is to find a test suite5

that achieves maximum code coverage [1]. Tools like EvoSuite [2] have been6

shown to be effective in achieving code coverage on different types of software [3].7

Since the original introduction of whole test suite generation [4], many dif-8

ferent optimisations have been introduced to improve performance even further,9

and to get a better understanding of the current limitations. For example, the10

insufficient guidance provided by basic coverage-based fitness functions has been11

shown to cause random search to often be equally effective as evolutionary algo-12

rithms [5]. Optimisation now no longer focuses on individual coverage criteria,13

but combinations of multiple different coverage criteria [6, 7]. To cope with the14

resulting larger number of coverage goals, evolutionary search can be supported15

with archives [8] that keep track of useful solutions encountered throughout16

the search. To improve effectiveness, whole test suite optimisation has been re-17

2

formulated as a many-objective optimisation problem [9]. In the context of these18

developments, one aspect of whole test suite generation remains largely unex-19

plored: What is the influence of the specific flavour of evolutionary algorithms20

applied to evolve test suites?21

In this paper, we aim to shed light on the influence of the different evolu-22

tionary algorithms in whole test suite generation, to find out whether the choice23

of algorithm is important, and which one should be used. By using a large set24

of complex Java classes as case study, and the EvoSuite [2] search-based test25

generation tool, we specifically investigate:26

RQ1: Which archive-based single-objective evolutionary algorithm performs best?27

RQ2: How does evolutionary search compare to random search and random28

testing?29

RQ3: Which archive-based many-objective evolutionary algorithm performs best?30

RQ4: How does evolution of whole test suites compare to many-objective opti-31

misation of test cases?32

We investigate each of these questions in the light of individual and multi-33

ple coverage criteria as optimisation objectives. This paper extends an earlier34

study [10], where we compared seven evolutionary algorithms and two random35

approaches. Our experiments now cover five additional algorithms, for a total36

of 13 different evolutionary algorithms, and corroborate the original findings:37

In most cases a simple (µ, λ) Evolutionary Algorithm (EA) is better than other,38

more complex algorithms. In most cases, the variants of EAs and GAs are also39

clearly better than random search and random testing, when a test archive is40

used. This study also extends the previous study with experiments using many-41

objective search algorithms using multiple criteria, and our experiments con-42

firm that many-objective search, in particular the DynaMOSA algorithm [11],43

achieves higher branch coverage, even in the case of optimisation for multiple44

criteria, than all the other evaluated single/many-objective evolutionary algo-45

rithms.46

3

2. Evolutionary Algorithms for Test Suite Generation47

Evolutionary Algorithms (EAs) are inspired by natural evolution, and have48

been successfully used to address many kinds of optimisation problems. In the49

context of EAs, a solution is encoded “genetically” as an individual (“chro-50

mosome”), and a set of individuals is called a population. The population is51

gradually optimised using genetics-inspired operations such as crossover, which52

merges genetic material from at least two individuals to yield new offspring,53

mutation, which independently changes the elements of an individual with a54

low probability, and selection which chooses individuals for reproduction, pre-55

ferring better, fitter individuals. While it is impossible to comprehensively cover56

all existing algorithms, in the following we discuss common variants of EAs for57

test suite optimisation. Expansion of the evaluation to less common algorithms58

(e.g., Differential Evolution [12], PAES [13], Coral Reef Optimisation [14], etc.)59

will be future work.60

2.1. Representation61

For test suite generation, the individuals of a population are sets of test62

cases (test suites); each test case is a sequence of calls. The length of a sequence63

of calls is variable, and there can be dependencies between statements. For64

example, one statement may define a variable used as a parameter for a call65

later in the call sequence. Standard types of statements in such sequences are66

definitions of primitive variables (e.g., integers or strings), calls to constructors67

to instantiate objects, and method calls on these objects.68

Listing 1: Example of a test suite (with only a subset of test cases) automatically generated

by EvoSuite [2] for ArrayByteList class of project Apache Commons Collections.
69

public class ArrayByteList_ESTest {70

@Test71

public void test0() throws Throwable {72

ArrayByteList arrayByteList0 = new ArrayByteList();73

arrayByteList0.ensureCapacity(550);74

assertEquals(0, arrayByteList0.size());75

}76

4

77

@Test78

public void test1() throws Throwable {79

ArrayByteList arrayByteList0 = new ArrayByteList();80

arrayByteList0.add((byte) (-113));81

arrayByteList0.add(0, (byte)0);82

byte byte0 = arrayByteList0.removeElementAt(0);83

assertEquals(1, arrayByteList0.size());84

assertEquals((byte)0, byte0);85

}86

}87
88

Crossover on test suites is based on exchanging test cases between sets [1].89

Mutation adds/modifies tests to suites, and adds/removes/changes statements90

within tests. The mutations applied at test case level need to ensure that91

test cases remain valid (e.g., when adding a new call there need to be suitable92

parameter objects defined earlier in the sequence).93

Although standard selection techniques are largely used (e.g., rank or tour-94

nament selection), the variable size representation (the number of statements95

in a test and number of test cases in a suite can vary) requires modification to96

avoid bloat [15]; this is typically achieved by ranking individuals with identical97

fitness based on their length, and then using rank selection.98

Standard whole test suite optimisation algorithms use test suites as individ-99

uals, since they are targeting coverage of all goals at the same time. Existing100

many-objective algorithms, on the other hand, aim to optimise an individual101

test for each distinct coverage goal, and so the search representation in this102

case is test cases. In this case, the test case mutation operators used when test103

suites are mutated are still used and bloat control is also active during selection.104

Crossover, however, needs to ensure that sequences of calls remain valid (i.e., all105

dependency variables need to exist). This is typically achieved by using repair106

actions when attaching to subsequences.107

5

2.2. Optimisation Goals and Archives108

The selection of individuals is guided by fitness functions, such that indi-109

viduals with good fitness values are more likely to survive and be involved in110

reproduction. In the context of test suite generation, the fitness functions are111

based on code coverage criteria such as statement or branch coverage.112

To provide a gradient to the search, most common fitness functions rely on113

the approach level and branch distance metrics [16, 17]. The approach level114

A(t, x) for a given test t on a coverage goal x ∈ X (for any given set of cover-115

age goals X) is the minimal number of control dependent edges in the control116

dependency graph between the target goal x and the control flow path repre-117

sented by the test case t. That is, it estimates the approximation between the118

execution path of a given test input and the target. The branch distance d(t, x)119

heuristically quantifies how far a branch (i.e., the control flow edge resulting120

from a true/false evaluation of an if-condition) is from being evaluated to true121

or to false. When optimising for individual coverage goals, the fitness function is122

usually a combination of approach level and branch distance. For example, for123

branch coverage the fitness function to minimize the approach level and branch124

distance between a test t and a branch coverage goal x is defined as:125

f(t, x) = A(t, x) + ν(d(t, x)) (1)

where ν is any normalizing function in the range [0, 1] [18]. When evolving test126

suites, however, one does not target individual goals but all coverage goals. For127

example, for branch coverage the resulting fitness function aims to minimise the128

branch distance of all branches B in the program under test. Thus, the fitness129

function for a test suite T and a set of branches B is:130

fBC(T,B) =
∑
b∈B

d(T, b) (2)

6

where d(T, b) is defined as:131

d(T, b) =

0 if branch b has been covered,

ν(dmin(t ∈ T, b)) if the predicate has been

executed at least twice,

1 otherwise.

(3)

More recently, there is a trend to optimise for multiple coverage criteria at132

the same time. Since coverage criteria usually do not represent conflicting goals,133

it is possible to combine fitness functions with a weighted linear combination [6].134

However, the increased number of coverage goals may affect the performance of135

the EA. To counter these effects, it is possible to store tests for covered goals in136

an archive [8], and then to dynamically adapt the fitness function to optimise137

only for the remaining uncovered goals. That is, during fitness evaluation, if138

a test case is found that newly covers a non-covered goal (e.g., branch, line,139

etc.), the covering test case and the covered goal are added to an archive. The140

fitness function is then optimised to only take into account the remaining goals.141

Note that this optimisation is only performed at the end of an iteration, i.e.,142

only after evaluating all individuals, and not during the evaluation of one test143

suite or during the creation of a new population, as it would make fitness values144

between individuals inconsistent. Once the search ends, the best individual of145

the EA is no longer the best individual of the search population, but a test suite146

composed by all the tests in the archive. Besides optimising fitness functions147

to make use of the archive, search operators can also be adapted to make use148

of the test archive; for example, new tests may be created by mutating tests in149

the archive rather than randomly generating completely new tests.150

2.3. Random Search & Random Testing151

Random search is a baseline search strategy which does not use crossover,152

mutation, or selection, but a simple replacement strategy [19]. Random search153

consists of repeatedly sampling candidates from the search space; the previous154

7

candidate is replaced if the fitness of the new sampled individual is better. Ran-155

dom search can make use of a test archive by changing the sampling procedure156

as indicated above. It has been shown that in unit test generation, due to the157

flat fitness landscapes and often simple search problems, random search is often158

as effective as EAs, and sometimes even better [5].159

Random testing is a variant of random search in test generation which builds160

a test suite incrementally. Test cases (rather than test suites) are sampled161

individually, and if a test case improves the coverage of the test suite, it is162

retained in the test suite, otherwise it is discarded. This incremental process163

does not benefit from using an archive, because every sampled test case that164

covers a goal that has not been covered is added to the test suite.165

2.4. Genetic Algorithms166

The Genetic Algorithm (GA) is one of the most widely-used EAs in many167

domains because it is well understood, it can be easily implemented, and it tends168

to obtain good results on average. Algorithm 1 illustrates a Standard GA. It169

starts by creating an initial random population of size ps (Line 1). Then, a pair170

of individuals is selected from the population using a strategy sf , such as rank-171

based, elitism or tournament selection (Line 6). Next, both selected individuals172

are recombined using crossover cf (e.g., single point, multiple-point) with a173

probability of cp to produce two new offspring o1, o2 (Line 7). Afterwards,174

mutation is applied on both offspring (Lines 8–9), independently changing the175

genes with a probability of mp, which usually is equal to 1
n , where n is the176

number of genes in a chromosome. The two mutated offspring are then included177

in the next population (Line 10). At the end of each iteration the fitness value178

of all individuals is computed (Line 13).179

Many variants of the Standard GA have been proposed to improve effective-180

ness. Specifically, we consider a monotonic version of the Standard GA (Al-181

gorithm 2) which, after mutating and evaluating each offspring, only includes182

either the best offspring or the best parent in the next population (whereas the183

Standard GA includes both offspring in the next population regardless of their184

8

Algorithm 1 Standard Genetic Algorithm

Input: Stopping condition C, Fitness function δ, Population size ps, Selec-
tion function sf , Crossover function cf , Crossover probability cp, Mutation
function mf , Mutation probability mp

Output: Population of optimised individuals P
1: P ← GenerateRandomPopulation(ps)
2: PerformFitnessEvaluation(δ, P)
3: while ¬C do
4: NP ← { } ∪ Elitism(P)
5: while |NP | < ps do
6: p1, p2 ← Selection(sf , P)
7: o1, o2 ← Crossover(cf , cp, p1, p2)
8: Mutation(mf ,mp, o1)
9: Mutation(mf ,mp, o2)

10: NP ← NP ∪ {o1, o2}
11: end while
12: P ← NP
13: PerformFitnessEvaluation(δ, P)
14: end while
15: return P

fitness value). Another variation of the Standard GA is a Steady State GA (Al-185

gorithm 3), which uses the same replacement strategy as the Monotonic GA,186

but instead of creating a new population of offspring, the offspring replace the187

parents from the current population immediately after the mutation phase.188

A Breeder GA [20] (Algorithm 4) is a GA variant that does not aim to mimic189

Darwinian evolutionary, but instead tries to mimic breeding mechanism, as used190

for example in livestock. This is done by selecting a fixed percentage (e.g., 50%)191

of the best individuals of the total population as gene pool, and then uniformly192

sampling from this pool for reproduction (using standard crossover and muta-193

tion) when generating a new population. In addition, the best q individuals194

(e.g., 1) survive in terms of elitism.195

The Cellular GA [21] differs from the Standard GA by considering a struc-196

tured population which influences selection. For example, individuals can be set197

in a toroidal d-dimensional grid where each individual takes a place per a grid198

(i.e., cell) and belongs to an overlapped neighbourhood. The grid of individuals199

can have different number of dimensions; common values are one-dimensional200

9

Algorithm 2 Monotonic Genetic Algorithm

Input: Stopping condition C, Fitness function δ, Population size ps, Selec-
tion function sf , Crossover function cf , Crossover probability cp, Mutation
function mf , Mutation probability mp

Output: Population of optimised individuals P
1: P ← GenerateRandomPopulation(ps)
2: PerformFitnessEvaluation(δ, P)
3: while ¬C do
4: NP ← { } ∪ Elitism(P)
5: while |NP | < ps do
6: p1, p2 ← Selection(sf , P)
7: o1, o2 ← Crossover(cf , cp, p1, p2)
8: Mutation(mf ,mp, o1)
9: Mutation(mf ,mp, o2)

10: PerformFitnessEvaluation(δ, o1)
11: PerformFitnessEvaluation(δ, o2)
12: if Best(o1, o2) is better than Best(p1, p2) then
13: NP ← NP ∪ {o1, o2}
14: else
15: NP ← NP ∪ {p1, p2}
16: end if
17: end while
18: P ← NP
19: end while
20: return P

(i.e., ring) or two-dimensional grids. In the case of a bi-dimensional grid, differ-201

ent shapes (i.e., models) of a neighbourhood can be defined. For example, the202

linear 5 model considers the individual itself and the individuals in its north,203

south, east, and west positions as neighbours of the current one.204

Each individual is only allowed to interact with its neighbours and therefore205

the search operators are only applied on the individuals of one neighbourhood.206

First, two parents p1, p2 are selected among the neighbours of one individual p207

according to a selection criterion. Then, crossover is performed to create two208

new individuals o1, o2, which are then evaluated. The best individual (o) among209

the two new generated individuals is mutated and evaluated. Finally, if fitness210

value of p is better than the fitness value of o, the former is included in the211

next population, otherwise the later is included in the next population. Due212

10

Algorithm 3 Steady-State Genetic Algorithm

Input: Stopping condition C, Fitness function δ, Population size ps, Selec-
tion function sf , Crossover function cf , Crossover probability cp, Mutation
function mf , Mutation probability mp

Output: Population of optimised individuals P
1: P ← GenerateRandomPopulation(ps)
2: PerformFitnessEvaluation(δ, P)
3: while ¬C do
4: p1, p2 ← Selection(sf , P)
5: o1, o2 ← Crossover(cf , cp, p1, p2)
6: Mutation(mf ,mp, o1)
7: Mutation(mf ,mp, o2)
8: PerformFitnessEvaluation(δ, o1)
9: PerformFitnessEvaluation(δ, o2)

10: if Best(o1, o2) is better than Best(p1, p2) then
11: P ← P \ {p1, p2} ∪ {o1, o2}
12: else
13: P ← P \ {o1, o2} ∪ {p1, p2}
14: end if
15: end while
16: return P

to the neighbourhood overlapping, the Cellular GA motivates slow diffusion of213

solutions through the population and thus the exploration of the search space214

and the exploitation inside each neighbourhood are promoted during the search.215

The 1 + (λ, λ) GA (Algorithm 6), introduced by Doerr et al. [22], starts by216

generating a random population of size 1. Then, mutation is used to create217

λ different mutated versions of the current individual. Mutation is applied218

with a high mutation probability, defined as mp = k
n , where k is typically219

greater than one, which allows, on average, more than one gene to be mutated220

per chromosome. Then, uniform crossover is applied to the parent and best221

generated mutant to create λ offspring. While a high mutation probability is222

intended to support faster exploration of the search space, a uniform crossover223

between the best individual among the λ mutants and the parent was suggested224

to repair the defects caused by the aggressive mutation. Then all offspring are225

evaluated and the best one is selected. If the best offspring is better than the226

parent, the population of size one is replaced by the best offspring. 1 + (λ, λ)227

11

Algorithm 4 Breeder Genetic Algorithm

Input: Stopping condition C, Fitness function δ, Population size ps, Selec-
tion function sf , Crossover function cf , Crossover probability cp, Mutation
function mf , Mutation probability mp

Output: Population of optimised individuals P
1: P ← GenerateRandomPopulation(ps)
2: PerformFitnessEvaluation(δ, P)
3: while ¬C do
4: NP ← { } ∪ Elitism(P)
5: P ′ ← Truncate(P)
6: while |NP | < ps do
7: p1 ← SelectRandom(P ′)
8: p2 ← SelectRandom(P ′)
9: o1, o2 ← Crossover(cf , cp, p1, p2)

10: Mutation(mf ,mp, o1)
11: Mutation(mf ,mp, o2)
12: o← SelectRandom(o1, o2)
13: NP ← NP ∪ {o}
14: end while
15: P ← NP
16: PerformFitnessEvaluation(δ, P)
17: end while
18: return P

GA could be very expensive for large values of λ, as fitness has to be evaluated228

after mutation and after crossover.229

2.5. Evolution Strategies230

Evolution strategies, dating back to Rechenberg [23], primarily use mutation231

and selection as search operators. Algorithm 7 shows a basic (µ+λ) Evolution-232

ary Algorithm (EA), where a population of µ individuals is evolved by generating233

λ individuals in each generation through mutation of the µ individuals in the234

population. Among the different (µ+λ) EA versions, two common settings are235

(1+λ) EA and (1+1) EA, where the population size is 1, and the number of236

offspring is also limited to 1 for the (1+1) EA. In the (µ + λ) EA, after the237

mutation step the best µ individuals out of the previous generation and the238

offspring are selected and kept as the new population. A variant of this is a239

12

Algorithm 5 Cellular Genetic Algorithm

Input: Stopping condition C, Fitness function δ, Population size ps, Selec-
tion function sf , Crossover function cf , Crossover probability cp, Mutation
function mf , Mutation probability mp, Neighbourhood model nm

Output: Population of optimised individuals P
1: P ← GenerateRandomPopulation(ps)
2: PerformFitnessEvaluation(δ, P)
3: while ¬C do
4: NP ← { }
5: for all p ∈ P do
6: NB ← GetNeighbourhood(p, P, nm)
7: p1, p2 ← Selection(sf , NB)
8: o1, o2 ← Crossover(cf , cp, p1, p2)
9: PerformFitnessEvaluation(δ, o1)

10: PerformFitnessEvaluation(δ, o2)
11: o← Best(o1, o2)
12: Mutation(mf ,mp, o)
13: PerformFitnessEvaluation(δ, o)
14: NP ← NP ∪ Best(o, p)
15: end for
16: P ← NP
17: end while
18: return P

(µ, λ) EA (Algorithm 8), where the µ new individuals are only selected from240

the offspring, and the parents are discarded.241

2.6. Chemical Reaction Optimisation (CRO)242

The Chemical Reaction Optimisation (CRO) [24] (Algorithm 9) is a meta-243

heuristic algorithm which incorporates the best of a population-based algorithm244

(e.g., as genetic algorithms) and the simulated annealing [25] local search. CRO245

is inspired by the nature of chemical reactions, i.e., the process of transform-246

ing a set of unstable molecules in a container (similar to a population in GAs)247

to a set of stable molecules. The basic unit in CRO is a molecule (similar to248

a chromosome in GAs) and it is characterised by its potential energy (corre-249

sponding to the fitness value in GAs), its kinetic energy, and the number of250

collisions that is has been involved in. To manipulate individuals and explore251

13

Algorithm 6 1 + (λ, λ) Genetic Algorithm

Input: Stopping condition C, Fitness function δ, Offspring size λ, Crossover
function cf , Crossover probability cp, Mutation function mf , Mutation
probability mp

Output: Best individual p
1: p← GenerateRandomIndividual()
2: PerformFitnessEvaluation(δ, p)
3: while ¬C do
4: M ← { }
5: for i← 1, λ do
6: o← Mutation(mf ,mp, p)
7: PerformFitnessEvaluation(δ, o)
8: M ← M ∪ {o}
9: end for

10: p′ ← Best(M)
11: O ← { }
12: for i← 1, λ2 do
13: o1, o2 ← Crossover(cf , cp, p, p

′)
14: PerformFitnessEvaluation(δ, o1)
15: PerformFitnessEvaluation(δ, o2)
16: O ← O ∪ {o1, o2}
17: end for
18: p′ ← Best(O)
19: if p′ is better than p then
20: p← p′

21: end if
22: end while
23: return p

the search space, CRO iteratively applies chemical reactions, which are similar252

to the search operations in a GA.253

There are four types of reactions, each occurring in each iteration of CRO:254

on-wall ineffective collision and inter-molecular ineffective collision are used255

as local search operators, and on the other hand decomposition and synthe-256

sis are used as global search operators. An on-wall ineffective collision occurs257

when a molecule hits a wall of the container and stays as a single molecule. In258

the process some of molecule’s kinetic energy is transferred to the container.259

An inter-molecular ineffective collision occurs when multiple molecules (typi-260

cally two) collide with each other. Although this collision could be modelled261

14

Algorithm 7 (µ+ λ) Evolutionary Algorithm

Input: Stopping condition C, Fitness function δ, Population size µ, Offspring
size λ, Mutation function mf , Mutation probability mp

Output: Population of optimised individuals P
1: P ← GenerateRandomPopulation(µ)
2: PerformFitnessEvaluation(δ, P)
3: while ¬C do
4: O ← { }
5: for all p ∈ P do
6: for i← 1, λµ do

7: o← Mutation(mf ,mp, p)
8: O ← O ∪ {o}
9: end for

10: end for
11: PerformFitnessEvaluation(δ,O)
12: P ← select best µ individuals from P ∪O
13: end while
14: return P

Algorithm 8 (µ, λ) Evolutionary Algorithm

Input: Stopping condition C, Fitness function δ, Population size µ, Offspring
size λ, Mutation function mf , Mutation probability mp

Output: Population of optimised individuals P
1: P ← GenerateRandomPopulation(µ)
2: PerformFitnessEvaluation(δ, P)
3: while ¬C do
4: O ← { }
5: for all p ∈ P do
6: for i← 1, λµ do

7: o← Mutation(mf ,mp, p)
8: O ← O ∪ {o}
9: end for

10: end for
11: PerformFitnessEvaluation(δ,O)
12: P ← select best µ individuals from O
13: end while
14: return P

as two independent on-wall ineffective collisions, the energy is handled in a dif-262

ferent way, as molecules could exchange energy. A decomposition occurs when263

a molecule hits a wall of a container, but rather than bouncing away as a sin-264

gle molecule as in an inter-molecular ineffective collision, it breaks into several265

15

Algorithm 9 Chemical Reaction Optimisation (CRO)

Input: Stopping condition C, Fitness function δ, Population size ps (i.e., num-
ber of molecules), Crossover function cf , Crossover probability cp, Mutation
function mf , Mutation probability mp, Collision rate cr, Decomposition
threshold dt, Synthesis threshold st, Initial kinetic energy ke, Kinetic en-
ergy loss rate kr,

Output: Population of optimised molecules P
1: P ← GenerateRandomPopulation(ps, ke)
2: PerformFitnessEvaluation(δ, P)
3: while ¬C do
4: r ← Random(0,1)
5: if r > cr then
6: m← Random(P)
7: if NumberCollisions(m) > dt then
8: Decomposition(δ,mf ,mp, P,m)
9: else

10: OnwallIneffectiveCollision(δ,mf ,mp, kr, P,m)
11: end if
12: else
13: m1,m2 ← Random(P)
14: if SynthesisThreshold(m1) ≤ st and
15: SynthesisThreshold(m2) ≤ st then
16: Synthesis(δ, cf , cp, P,m1,m2)
17: else
18: IntermolecularIneffectiveCollision(δ,mf ,mp, P,m1,m2)
19: end if
20: end if
21: end while
22: return P

molecules (typically two). If the kinetic energy of the molecule is not enough266

to create two new molecules, some energy from the container is added to the267

newly generated molecules. On the other hand, a synthesis occurs when multi-268

ple molecules (typically two) collide with each other and form a single molecule.269

The kinetic energy of both molecules is joined and added to the new molecule.270

CRO has more parameters to control than a common GA, in particular: the271

rate at which molecules lose kinetic energy after a collision (kinetic energy loss272

rate, a lower value would allow molecules to explore their local search space for273

longer), the rate of molecular collisions (molecular collision rate, a higher value274

would allow molecules to exchange information, i.e., energy more often), and the275

16

initial kinetic energy of each molecule (a higher value would allow molecules to276

explore their local search space for longer). There are two other parameters to277

control the degree of diversity of the container (i.e., population of molecules):278

a decomposition threshold to control whether a decomposition can be applied279

to a molecule (only molecules that have not been involved in n collisions can280

be decomposed), and a synthesis threshold to control whether a molecules can281

be synthesised (a molecule can synthesised if its kinetic energy is lower than282

a threshold). In this paper we used the values suggested by Lam and Li [26],283

i.e., kinetic energy loss rate and molecular collision rate of 0.2, an initial kinetic284

energy of 1000, a decomposition threshold of 500, and a synthesis threshold equal285

to 10.286

2.7. Linearly Independent Path based Search (LIPS) Algorithm287

The Linearly Independent Path based Search (LIPS) algorithm [27] uses a288

single-objective genetic algorithm to optimise one coverage target (i.e., a branch)289

at a time. Algorithm 10 illustrates how LIPS works. As neither the pseudo-code290

nor the source code of the original LIPS implementation are available, we refer291

to the implementation proposed by Panichella et al. [28] and implemented on292

EvoSuite.293

Briefly, it starts by generating and evaluating a random test case i. If i294

covers any branch goal, it is added to a pool of test cases (which keeps the best295

test cases found by the search, similar to an archive). Then, the list of branches296

not covered by test i is computed. For the next iteration of the algorithm, a297

target goal is chosen from the list of uncovered goals (i.e., the last uncovered298

goal of the path traversed by the last test case added to the pool of test cases),299

and a population (which includes i) is randomly generated. In LIPS, every300

target goal has an initial time limit to be covered equal to the total search301

budget divided by the total number of targets. However, as the search evolves,302

the time limit to satisfy each target is dynamically updated as branches are303

covered during the search (as some branches could be easier/quicker to cover304

than others). Within this time limit new offspring are generated based on305

17

Algorithm 10 Linearly Independent Path based Search (LIPS) Algorithm

Input: Stopping condition C, Branch fitness function δ, Branch coverage
goals B, Population size ps, Selection function sf , Crossover function cf ,
Crossover probability cp, Mutation function mf , Mutation probability mp

Output: Population of optimised individuals A
1: A← { }
2: i← GenerateRandomIndividual()
3: PerformFitnessEvaluation(δ, i)
4: UB ← GetUncoveredBranches(B, i)
5: b← PopLast(UB)
6: UpdateOptimisedPopulation(A, i)
7: P ← GenerateRandomPopulation(ps − 1) ∪ {i}
8: while ¬C and UB 6= Ø do
9: NP ← { } ∪ Elitism(P)

10: while |NP | < ps do
11: p1, p2 ← Selection(sf , P)
12: o1, o2 ← Crossover(cf , cp, p1, p2)
13: Mutation(mf ,mp, o1)
14: Mutation(mf ,mp, o2)
15: NP ← NP ∪ {o1, o2}
16: end while
17: PerformFitnessEvaluation(δ,NP)
18: CollateralCoverage(UB , NP)
19: UpdateUncoveredBranches(UB , NP)
20: UpdateOptimisedPopulation(A,NP)
21: if b 6∈ UB or ¬HasBudgetLeftForBranchB(UB , b) then
22: b← PopLast(UB)
23: end if
24: P ← NP
25: end while
26: return A

traditional selection, crossover, and mutation operators. Once the offspring is306

generated it is then evaluated to assess whether it covers the target goal or any307

other goal. If any offspring (i.e., test cases) cover the current target goal: 1)308

the target goal is removed from the list of uncovered goals, 2) the new test case309

is added to the final pool of test cases, and 3) a new uncovered target goal is310

selected. If no offspring is able to cover the target goal within the allocated311

time budget, no test case is added to the pool and a new uncovered target goal312

is selected. Note that whether a new offspring covers the target goal or not, it313

18

may by chance cover other goals (“collateral coverage”). In this case, all goals314

covered by the new offspring are removed from the list of uncovered goals and315

the test is added to the final pool of test cases. At the end of each iteration the316

current population seeds the next iteration of the algorithm as it may include317

individuals covering alternative branches of the uncovered target branch. The318

algorithm stops when all targets are covered or a stopping condition is met.319

2.8. Many-Objective Sorting Algorithm320

Unlike the single-objective optimisation on the test suite level described321

above, the Many-Objective Sorting Algorithm (MOSA) [9] regards each coverage322

goal as an independent optimisation objective. MOSA is a variant of NSGA-323

II [29], and uses a preference sorting criterion to reward the best tests for each324

non-covered target, regardless of their dominance relation with other tests in325

the population. MOSA also uses an archive to store the tests that cover new326

targets, which aiming to keep record on current best cases after each iteration.327

Algorithm 11 illustrates how MOSA works. It starts with a random pop-328

ulation of test cases. Then, and similar to typical EAs, the offspring are cre-329

ated by applying crossover and mutation (Line 6). Selection is based on the330

combined set of parents and offspring. This set is sorted (Line 9) based on a331

non-dominance relation and preference criterion. MOSA selects non-dominated332

individuals based on the resulting rank, starting from the lowest rank (F0), until333

the population size is reached (Lines 11-14). In fewer than ps individuals are se-334

lected, the individuals of the current rank (Fr) are sorted by crowding distance335

(Line 16-17), and the individuals with the largest distance are added. Finally,336

the archive that stores previously uncovered branches is updated in order to337

yield the final test suite (Line 18). In order to cope with the large numbers338

of goals resulting from the combination of multiple coverage criteria, the Dy-339

naMOSA [11] extension dynamically selects targets based on the dependencies340

between the uncovered targets and the newly covered targets. Both, MOSA341

and DynaMOSA, have been shown to result in higher coverage of some selected342

criteria than traditional GAs for whole test suite optimisation.343

19

Algorithm 11 Many-Objective Sorting Algorithm (MOSA)

Input: Stopping condition C, Fitness function δ, Population size ps, Crossover
function cf , Crossover probability cp, Mutation probability mp

Output: Archive of optimised individuals A
1: p← 0
2: Np ← GenerateRandomPopulation(ps)
3: PerformFitnessEvaluation(δ,Np)
4: A← { }
5: while ¬C do
6: No ← GenerateOffspring(cf , cp,mp, Np)
7: Rt ← Np ∪No
8: r ← 0
9: Fr ← PreferenceSorting(Rt)

10: Np+1 ← { }
11: while |Np+1|+ |Fr| ≤ ps do
12: CalculateCrowdingDistance(Fr)
13: Np+1 ← Np+1 ∪ Fr
14: r ← r + 1
15: end while
16: DistanceCrowdingSort(Fr)
17: Np+1 ← Np+1 ∪ Fr with size ps − |Np+1|
18: UpdateArchive(A,Np+1)
19: p← p+ 1
20: end while
21: return A

2.9. Many Independent Objective (MIO) Algorithm344

The Many Independent Objective (MIO) Algorithm [30] is a search algorithm345

that is tailored for test suite generation. Its main motivation is to tackle cases346

when there is a large number of testing targets, and comparatively little available347

search budget. This is mainly the case for system testing, but could also happen348

for unit testing of large classes with test criteria like mutation testing (which349

typically results in many test targets).350

A high level pseudo-code of how MIO works is listed in Figure 12. MIO351

evolves individual test cases, which are stored in an archive. At the end of352

search, a test suite is composed of the tests in the archive. In MIO, testing353

targets are sought independently, and a population of test cases is kept for354

each testing target. Once a target is covered, its best solution is saved in the355

20

Algorithm 12 Many Independent Objective (MIO) Algorithm

Input: Stopping condition C, Fitness function δ, Population size N , Mutation
function mf , Mutation probability mp, Probability of random sampling R,
Start of focused search F

Output: Archive of optimised individuals A
1: Z ← SetOfEmptyPopulations()
2: A← { }
3: while ¬C do
4: if R > Random(0,1) then
5: p← GenerateRandomIndividual()
6: else
7: p← SampleIndividual(Z)
8: p← Mutation(mf ,mp, p)
9: end if

10: for all t ∈ ReachedTargets(p) do
11: if IsTargetCovered(t) then
12: UpdateArchive(A, p)
13: Z ← Z \ {Zt}
14: else
15: Zt ← Zt ∪ {p}
16: if |Zt| > N then
17: RemoveWorstTest(Zt, δ)
18: end if
19: end if
20: end for
21: UpdateParameters(F,R,N)
22: end while
23: return A

archive, and the population is deleted. To avoid memory problems, the number356

of populations is dynamic: MIO only holds populations for targets that are357

reached and not fully covered yet.358

At the beginning of the search, all populations are empty, and a random359

test case is generated. This test is added to all the populations of the targets360

reached by its execution. At each iteration, like in a (1+1) EA, a test case is361

sampled and mutated. The resulting offspring is copied and added to all the362

populations of targets reached by the offspring execution. When a population363

size reaches a certain threshold N , adding a new offspring will be followed by364

removing the worst test case in that population, where the fitness value is only365

21

based on that single target the population is for. In other words, a population366

will not increase in size more than N .367

The sampling of which offspring to generate is done in two ways: with prob-368

ability P , it is created at random, whereas with 1 − P it is sampled from one369

of the populations. When a population to sample from is chosen, the actual370

test in the population to copy and mutate is chosen randomly with uniform371

probability.372

To handle the tradeoff between exploration and exploitation of the search373

landscape, MIO employs a dynamic parameter control. For example, give a374

starting value for R (e.g., R = 0.5), this value is decreased linearly over time375

until it reaches R = 0, when a more focused search starts. Similarly, N decreases376

down to N = 1. In other words, at the beginning of the search, MIO is similar377

to random search, but, with the passing of iterations, it becomes closer and378

closer to a focused (1+1) EA. When the focused search starts is controlled by379

a parameter F , which represents the amount of search budget consumed before380

starting the focused search.381

To handle possible issues with infeasible targets, the choice of which popu-382

lation to sample from is not at random. MIO keeps track of how often there are383

improvements in fitness value for the different testing targets that are not yet384

covered. Populations for testing targets with recent fitness improvements are385

more likely to be sampled from compared to populations for targets whose best386

fitness value has been stagnating (which would happen for infeasible targets).387

3. Empirical Study388

In order to evaluate the influence of the evolutionary algorithm on test suite389

generation, we conducted an empirical study. In this section, we describe the390

experimental setup.391

22

3.1. Experimental Setup392

3.1.1. Selection of Classes Under Test393

A key factor of studying evolutionary algorithms on automatic test gener-394

ation is the selection of classes under test. As many open source classes, for395

example contained in the SF110 [3] corpus, are trivially simple [5] and would396

not reveal differences between algorithms, we used the selection of non-trivial397

classes from the DynaMOSA study [11]. This is a corpus of 117 open-source398

Java projects and 346 classes, selected from four different benchmarks. The399

complexity of classes ranges from 14 statements and 2 branches to 16,624 state-400

ments and 7,938 branches. The average number of statements is 1,109, and the401

average number of branches is 259.402

3.1.2. Unit Test Generation Tool403

We used EvoSuite [2], which provides search algorithms to evolve coverage-404

optimised test suites, and allows an unbiased comparison of the algorithms as405

the underlying implementation of the tool is the same across all algorithms.406

By default, EvoSuite uses a Monotonic GA described in Section 2.4. It also407

provides a Standard and Steady State GA, Random search, Random testing408

and, more recently, MOSA, DynaMOSA, and LIPS. For this study, we extended409

EvoSuite with seven algorithms: the 1+(λ, λ) GA, (µ + λ) EA, (µ, λ) EA,410

Breeder GA, Cellular GA, CRO, and MIO. All evolutionary algorithms use a411

test archive.412

3.1.3. Experiment Procedure413

We performed two experiments to assess the performance of the 13 selected414

evolutionary algorithms (described in Section 2). First, we conducted a tun-415

ing study to select the best population size (µ) of nine algorithms, number of416

mutations (λ) of 1 + (λ, λ) GA, population size (µ) and number of mutations417

(λ) of (µ + λ) EA and (µ, λ) EA, and the amount of search budget consumed418

before starting MIO’s focused search, as the performance of each EA can be in-419

23

fluenced by the parameters used [31]. Random-based approaches do not require420

any tuning. Then, we conducted a larger study to perform the comparison.421

For both experiments we have two configurations: 1) single-criterion opti-422

misation (i.e., branch coverage optimisation), and 2) multiple-criteria optimisa-423

tion1 (i.e., line, branch, exception, weak-mutation, output, method, method-no-424

exception, and context-dependent branch coverage) [6] to study the effect of the425

number of coverage criteria on the coverage of resulting test suites. For both426

configurations we used EvoSuite’s default search budget of 1 minute. Due to427

the randomness of EAs, we repeated the experiments 30 times.428

For the tuning study, we randomly selected 10% (i.e., 34) of DynaMOSA’s429

study classes [11] (with 15 to 1,707 branches, 227 on average) from 30 Java430

projects. This resulted in a total of 25,500 (13,260 single-criterion configu-431

rations, and 12,240 multiple-criteria configurations; the number of multiple-432

criteria configurations is lower because LIPS only supports single criteria) calls433

to EvoSuite and more than 17 days of CPU-time overall. For the second ex-434

periment, we used the remaining 308 classes (346 total - 34 used to tune each435

EA - 4 discarded due to crashes of EvoSuite) from the DynaMOSA study [11].436

Besides the tuned µ, λ parameters, and MIO’s exploitation starting point, we437

used EvoSuite’s default parameters [31].438

3.1.4. Experiment Analysis439

For each test suite generated by EvoSuite on any experimental configura-440

tion we measure the coverage achieved on eight criteria, alongside other metrics,441

such as the number of generated test cases, the length of generated test suites442

in terms of statements, number of iterations of each EA, number of fitness eval-443

uations, mutation score of the generated test suites, etc. As described by Arcuri444

and Fraser [31] “easy” branches are always covered independently of the param-445

eter settings used, and several others are just infeasible. Therefore, rather than446

using raw coverage values, we use relative coverage [31]: Given the coverage447

1At the time of writing this paper, LIPS did not support all the criteria used by EvoSuite.

24

of a class c in a run r, cov(c, r), the best and worst coverage of c in any run,448

max(cov(c)) and min(cov(c)) respectively, a relative coverage, δ(c, r), can be449

defined as450

δ(c, r) =
cov(c, r) − min(cov(c))

max(cov(c)) − min(cov(c))

If the best and worst coverage of c is equal, i.e., max(cov(c)) == min(cov(c)),451

then δ(c, r) is 1 (if range of cov(c, r) is between 0 and 1) or 100 (if range of452

cov(c, r) is between 0 and 100). Given a set of runs R, the average relative453

coverage of a class c is defined as454

∆(c) =
1

|R|
∑
r∈R

δ(c, r)

Thus, the coverage achieved by an algorithm A can be defined as455

covA =
1

|C|
∑
c∈C

∆(c)

where C represents the set of classes. This way, the coverage of a trivial small456

class would be as important as the coverage of a large (perhaps more complex)457

class. For each averaged coverage value we compute common statistics such as458

standard deviation (σ), and confidence intervals (“CI”) using bootstrapping at459

95% confidence level. In order to statistically compare the performance of each460

EA we use the Vargha-Delaney Â12 effect size, the Wilcoxon-Mann-Whitney461

U-test with a 95% confidence level, and the Friedman test. Note that we do462

not perform any p-value adjustments in this study, e.g., Bonferroni, as the use463

of such adjustments has been discouraged [32] due to substantial reduction in464

the statistical power of rejecting an incorrect null hypothesis [33], and therefore465

increasing the likelihood of Type II errors.466

3.1.5. Threats to Validity467

Threats to internal validity might result from how the empirical study was468

carried out. We thoroughly tested the experiment framework and test genera-469

tion tool in order to reduce the chances of having faults, but it is well-known470

25

that testing alone cannot prove the absence of defects. Since the randomised471

algorithms underlying our study are affected by chance, we ran each experiment472

30 times and followed rigorous statistical procedures to evaluate the results. To473

avoid possible confounding factors when comparing different algorithms, they474

were all implemented in the same tool. Furthermore, we used the same de-475

fault values for all relevant parameters, and tuned the algorithm-specific ones.476

It is nevertheless possible that different parameter values might influence the477

performance of each EA.478

We measured the success of different EAs using code coverage. While higher479

coverage is a desirable goal for test generation, there is an ongoing debate on480

how code coverage correlates to fault finding potential, and so there is a threat481

to construct validity resulting from how we measure test suite quality. However,482

code coverage is nevertheless sufficient to compare the effectiveness of different483

optimisation algorithms at achieving their optimisation goal.484

As with any empirical study, there are threats to external validity regarding485

the generalisation to other types of software. The results reported in this paper486

are limited to the number and type of EAs used in the experiments. However,487

we believe these are representative of state-of-art algorithms, and are sufficient488

in order to demonstrate the influence of each algorithm on the problem, and of489

the choice of algorithm on the problem in general. We used 346 complex classes490

from 117 open-source Java projects in our experiments. While this resulted in a491

substantial computational effort, our results may not generalise to other classes.492

However, we specifically chose classes that are complex, as also used in previous493

studies [11] on test generation.494

3.2. Parameter Tuning495

The execution of an EA requires a number of parameters to be set. As there496

is not a single best configuration setting to solve all problems [34] in which497

an EA could be applied, a possible alternative is to tune EA’s parameters for a498

specific problem at hand to find the “best” ones. Our experimental setup largely499

relies on two previous tuning studies: 1) Arcuri and Fraser [31] determined the500

26

best values for most parameters of EvoSuite, such as crossover rate, elitism501

rate, selection function, etc.; and 2) Shamshiri et al. [35] determined the best502

values for CRO in the context of search-based test generation, for instance, the503

best potential energy value, or the best number of collisions allowed, etc. Both504

studies performed a similar tuning study as the one defined and reported in this505

paper to identify the best parameters. Note that, although neither Breeder GA,506

Cellular GA, 1 + (λ, λ) GA, (µ+ λ) EA, and (µ, λ) EA have been evaluated in507

the context of unit test generation, none of the algorithms except Cellular GA508

require any new parameters. For the Cellular GA we use the best parameter509

(i.e., neighbourhood model) that has been reported by previous work [21]. The510

main distinguishing factors between the algorithms we are considering in this511

study are µ (i.e., the population size) and λ (i.e., the number of mutations),512

or F which represents the amount of search budget consumed before starting513

the focused search in MIO. In particular, we selected common values used in514

previous studies and reported to be the best for each EA:515

� Population size of 10, 25, 50, and 100 for Standard GA, Monotonic GA,516

SteadyState GA, Breeder GA, Cellular GA, CRO, MOSA, DynaMOSA,517

and LIPS.518

� λ size of 1, 8 [22], 25, and 50 for 1 + (λ, λ) GA.519

� µ size of 1, 7 [36], 25, and 50, and λ size of 1, 7, 25, and 50 for (µ+λ) EA520

and (µ, λ) EA.521

� F of 0.00, 0.25, 0.50, 0.75, 1.00 for MIO.522

Thus, for Standard GA, Monotonic GA, SteadyState GA, Breeder GA, Cellular523

GA, CRO, MOSA, DynaMOSA, LIPS, and 1 + (λ, λ) GA there are 4 different524

configurations; for (µ+ λ) EA and (µ, λ) EA, and as λ must be divisible by µ,525

there are 8 different configurations (i.e., 1+1, 1+7, 1+25, 1+50, 7+7, 25+25,526

25 + 50, 50 + 50); for MIO there are 5 different configurations, i.e., a total of 61527

different configurations.528

27

Branch Overall Avg. Better Worse

Algorithm X Cov. Cov. Â12 Â12 Â12

Search budget of 60 seconds – Single-criteria
Standard GA 10 0.74 — 0.53 0.76 0.31
Monotonic GA 25 0.75 — 0.54 0.73 0.32
Steady-State GA 10 0.70 — 0.54 0.73 0.32
1 + (λ, λ) GA 8 0.61 — 0.53 0.69 0.30
(µ+ λ) EA 7+7 0.74 — 0.52 0.78 0.26
(µ, λ) EA 1,7 0.76 — 0.65 0.83 0.28

Breeder GA 10 0.67 — 0.51 0.73 0.23
Cellular GA 100 0.60 — 0.52 0.77 0.26

CRO 10 0.70 — 0.51 0.73 0.26
MOSA 10 0.74 — 0.53 0.72 0.24

DynaMOSA 10 0.75 — 0.55 0.73 0.16
LIPS 100 0.58 — 0.54 0.72 0.31
MIO 1.00 0.68 — 0.52 0.72 0.34

Search budget of 60 seconds – Multiple-criteria
Standard GA 100 0.64 0.66 0.52 0.74 0.23
Monotonic GA 100 0.63 0.65 0.53 0.76 0.22
Steady-State GA 100 0.58 0.61 0.53 0.77 0.23
1 + (λ, λ) GA 50 0.49 0.51 0.60 0.77 0.31
(µ+ λ) EA 50+50 0.67 0.69 0.55 0.77 0.21
(µ, λ) EA 25,50 0.68 0.70 0.61 0.81 0.25

Breeder GA 100 0.61 0.63 0.57 0.75 0.23
Cellular GA 100 0.57 0.60 0.62 0.79 0.25

CRO 100 0.62 0.64 0.49 0.73 0.23
MOSA 25 0.73 0.73 0.58 0.77 0.29

DynaMOSA 10 0.77 0.73 0.55 0.72 0.20
LIPS — — — — — —
MIO 0.25 0.67 0.66 0.54 0.71 0.28

Table 1: Best parameter (X, i.e., µ, µ + λ, or F) of each EA for single and multiple criteria
optimisation. “Branch Coverage” column reports the branch coverage per EA, and column “Overall

Coverage”, the overall coverage of a multiple-criteria optimisation, “Avg. Â12” represents the

average effect size of the best parameter value when compared to all possible parameter values,

“Better Â12” the effect size of all pairwise comparisons in which the best parameter was significantly

better, and “Worse Â12” the effect size of pairwise all comparisons in which the best parameter was

significantly worse.

To identify the best parameter of each EA, we performed a pairwise com-529

parison of the coverage achieved by using any µ (population size), µ+ λ, or F .530

The parameter for which an EA achieved a significantly higher coverage more531

often was selected as the best. Table 1 shows the best parameter per EA. For532

single and multiple-criteria the best population size is shared by several EAs,533

for instance, Standard GA, Steady-State GA, Breeder GA, and CRO share the534

same value (10 for single-criteria, and 100 for multiple-criteria). The best pop-535

ulation size for MOSA and DynaMOSA is the same for single-criteria (i.e., 10),536

28

but different for multiple-criteria (25 for MOSA, and 10 for DynaMOSA). The537

best F value for MIO is 1.0 for single-criteria, and 0.25 for multiple-criteria,538

i.e., for a smaller number of coverage goals MIO works best without focusing539

the search, and for a larger number of coverage goals (multiple-criteria scenario)540

MIO works best if the focus search is enabled once 25% of the search budget541

has been consumed. Table 1 also reports the average effect size of the best542

parameter value when compared to all possible parameter values; and the ef-543

fect size of pairwise comparisons in which the best parameter was significantly544

better/worse.545

4. Experiment Results546

Table 2 summarises the results of the main experiment described in the pre-547

vious section. For each algorithm we report the branch coverage achieved for548

single and multiple criteria, the overall coverage for multiple criteria, the muta-549

tion score, the number of generated test cases, and the rank of each algorithm550

based on their average performance. Table 2 also reports the standard deviation551

and confidence intervals (CI) using bootstrapping at 95% significance level of552

the coverage achieved (either branch or overall coverage).553

On one hand, MOSA and DynaMOSA achieve the highest coverage on aver-554

age (82%) for single criteria. Although the CI of both algorithms overlap ([80%,555

85%] vs. [79%, 84%]), DynaMOSA is ranked first. According to the Friedman556

test, the ranking reported in Table 2 is statistically significant for both sin-557

gle and multiple criteria, i.e., p-value is < 0.0001 for single criteria, and 0 for558

multiple criteria (full data is available on the accompanying website [37]). For559

multiple criteria, DynaMOSA achieves the highest overall coverage (86%) and560

CI among all algorithms. On the other hand, the 1 + (λ, λ) EA achieves the561

lowest branch coverage (61%) for single criteria, and Random testing achieves562

the lowest overall coverage (45%) for multiple criteria, thus it is ranked as the563

worst algorithm. There are a few algorithms that perform similarly, for instance,564

Standard GA, Monotonic GA, and (µ+λ) EA achieve the same branch coverage565

for single criteria (79%); and (µ+λ) EA, and (µ, λ) EA achieve the same overall566

29

Branch Overall Mut.
Algorithm Cov. σ CI Cov. σ CI Score #T R

Search budget of 60 seconds – Single-criteria
Random Search 0.73 0.07 [0.70, 0.76] — — — 0.44 28 8.3
Random Testing 0.69 0.08 [0.66, 0.72] — — — 0.43 25 10.5
Standard GA 0.79 0.09 [0.77, 0.82] — — — 0.46 27 6.3
Monotonic GA 0.79 0.08 [0.76, 0.81] — — — 0.45 27 6.2
Steady-State GA 0.76 0.08 [0.73, 0.79] — — — 0.44 27 8.1
1 + (λ, λ) GA 0.61 0.13 [0.58, 0.65] — — — 0.41 18 11.0
(µ+ λ) EA 0.79 0.08 [0.77, 0.82] — — — 0.46 28 5.9
(µ, λ) EA 0.81 0.09 [0.79, 0.83] — — — 0.46 28 5.1

Breeder GA 0.72 0.10 [0.70, 0.76] — — — 0.44 25 9.5
Cellular GA 0.67 0.09 [0.64, 0.71] — — — 0.43 26 10.8

CRO 0.74 0.10 [0.71, 0.77] — — — 0.44 26 8.6
MOSA 0.82 0.08 [0.79, 0.84] — — — 0.47 29 5.1

DynaMOSA 0.82 0.08 [0.80, 0.85] — — — 0.47 30 4.8
LIPS 0.62 0.11 [0.59, 0.66] — — — 0.42 23 11.9
MIO 0.75 0.09 [0.72, 0.78] — — — 0.44 27 7.9

Search budget of 60 seconds – Multiple-criteria
Random Search 0.65 0.10 [0.62, 0.67] 0.64 0.10 [0.62, 0.66] 0.44 31 9.1
Random Testing 0.55 0.09 [0.52, 0.59] 0.45 0.12 [0.42, 0.48] 0.41 28 12.3
Standard GA 0.71 0.08 [0.68, 0.74] 0.76 0.07 [0.73, 0.78] 0.46 42 5.6
Monotonic GA 0.71 0.08 [0.68, 0.74] 0.75 0.08 [0.73, 0.78] 0.46 41 6.1
Steady-State GA 0.65 0.08 [0.61, 0.68] 0.70 0.07 [0.67, 0.73] 0.45 39 8.9
1 + (λ, λ) GA 0.48 0.13 [0.45, 0.52] 0.54 0.12 [0.51, 0.57] 0.40 26 11.3
(µ+ λ) EA 0.72 0.08 [0.69, 0.75] 0.77 0.08 [0.75, 0.79] 0.46 42 5.3
(µ, λ) EA 0.72 0.09 [0.69, 0.75] 0.77 0.08 [0.75, 0.79] 0.47 40 5.6

Breeder GA 0.66 0.09 [0.63, 0.69] 0.71 0.08 [0.69, 0.74] 0.45 39 8.2
Cellular GA 0.61 0.09 [0.58, 0.64] 0.66 0.08 [0.63, 0.69] 0.44 39 10.2

CRO 0.69 0.09 [0.65, 0.72] 0.73 0.08 [0.71, 0.75] 0.46 40 7.1
MOSA 0.79 0.09 [0.76, 0.81] 0.81 0.08 [0.79, 0.83] 0.49 44 4.3

DynaMOSA 0.84 0.08 [0.82, 0.86] 0.86 0.07 [0.84, 0.87] 0.51 48 3.2
LIPS — — — — — — — — —
MIO 0.68 0.10 [0.65, 0.71] 0.71 0.09 [0.69, 0.74] 0.45 37 7.9

Table 2: For each algorithm, we report several statistics on the obtained results, such as
branch and overall coverage, standard deviation (σ), mutation score, number of generated test
cases (#T), and the rank of each algorithm based on their average performance (R), which
is statistically significant for both single and multiple criteria according to the Friedman test
(p-value is < 0.0001 for single criteria, and 0 for multiple criteria, full data is available on the
accompanying website [37]). For averaged coverage values we also report confidence intervals
(CI) using bootstrapping at 95% significance level.

coverage for multiple criteria (77%). To make these quantitative results more567

accessible, Figure 1 shows the coverage distribution achieved by each algorithm.568

It also shows the median and the mean per algorithm, and the mean of all al-569

gorithms. For single criteria the average coverage among all algorithms is 74%,570

which means 7 algorithms (i.e., Random search and Random testing, 1 + (λ, λ)571

30

●●●●●●●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●●

●
●

●

●●

●●

●●

●
●
●

●

●

●●
●●

●

●

●

●

●

●●

●
●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

%
 B

ra
n

c
h

 C
o
ve

ra
g

e

R
an

do
m

 S
ea

rc
h

R
an

do
m

 T
es

tin
g

Sta
nd

ar
d G

A

M
on

ot
on

ic
 G

A

Ste
ad

y
−
Sta

te
 G

A

1
+
(λ

 λ
) G

A

(µ
+

λ)
 E

A

(µ
 λ
) E

A

Bre
ed

er
 G

A

C
el
lu
la
r G

A

C
R
O

M
O
SA

D
yn

aM
O
SA

LI
PS

M
IO

0

10

20

30

40

50

60

70

80

90

100

74%

(a) Single criteria.

● ●●● ●●● ●● ●
●

●●

●

● ●●● ●

●

●

●
●

● ●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●●●
●
●

●

%
 O

ve
ra

ll
C

o
ve

ra
g

e

R
an

do
m

 S
ea

rc
h

R
an

do
m

 T
es

tin
g

Sta
nd

ar
d G

A

M
on

ot
on

ic
 G

A

Ste
ad

y
−
Sta

te
 G

A

1
+
(λ

 λ
) G

A

(µ
+

λ)
 E

A

(µ
 λ
) E

A

Bre
ed

er
 G

A

C
el
lu
la
r G

A

C
R
O

M
O
SA

D
yn

aM
O
SA

M
IO

0

10

20

30

40

50

60

70

80

90

100

70%

(b) Multiple criteria.

Figure 1: Coverage achieved by each algorithm. Middle line of each boxplot marks the median,

white circles represent outliers, ∗ symbol signifies the mean, and the grey line represents the mean

of all coverages.

EA, Breeder GA, Cellular GA, and LIPS) out of 15 perform below the average.572

On the other hand, for multiple criteria only 4 algorithms perform below the573

average (i.e., Random search and testing, 1 + (λ, λ) EA, and Cellular GA).574

In terms of mutation score and number of generated test cases, all algorithms575

performed similarly. For instance, MOSA and DynaMOSA generated 29 and 30576

test cases for single criteria, respectively, and both sets of test cases achieve the577

same mutation score (47%). The algorithm that generated the lowest number578

of test cases (18) and achieved the lowest mutation score (41%) is the 1 + (λ, λ)579

EA. Besides these three EAs, the range of mutation scores for single criteria580

31

Tourn. Branch Overall Better Worse

Algorithm Position Cov. Cov. Â12 than Â12 than Â12

Search budget of 60 seconds – Single-criteria
Standard GA 4 0.79 — 0.58 741 / 2464 0.82 210 / 2464 0.26
Monotonic GA 3 0.79 — 0.58 733 / 2464 0.81 189 / 2464 0.26
Steady-State GA 5 0.76 — 0.50 536 / 2464 0.82 599 / 2464 0.21
1 + (λ, λ) GA 8 0.61 — 0.33 189 / 2464 0.76 1218 / 2464 0.12
(µ+ λ) EA 2 0.79 — 0.60 815 / 2464 0.81 128 / 2464 0.28
(µ, λ) EA 1 0.81 — 0.63 1028 / 2464 0.81 60 / 2464 0.30

Breeder GA 7 0.72 — 0.44 322 / 2464 0.82 846 / 2464 0.21
Cellular GA 9 0.67 — 0.35 210 / 2464 0.82 1256 / 2464 0.17

CRO 6 0.74 — 0.50 460 / 2464 0.82 528 / 2464 0.23

Search budget of 60 seconds – Multiple-criteria
Standard GA 2 0.71 0.76 0.62 961 / 2464 0.82 130 / 2464 0.26
Monotonic GA 4 0.71 0.75 0.60 892 / 2464 0.81 188 / 2464 0.26
Steady-State GA 7 0.65 0.70 0.44 371 / 2464 0.85 893 / 2464 0.21
1 + (λ, λ) GA 9 0.48 0.54 0.22 120 / 2464 0.76 1724 / 2464 0.08
(µ+ λ) EA 1 0.72 0.77 0.64 1066 / 2464 0.83 106 / 2464 0.27
(µ, λ) EA 3 0.72 0.77 0.62 1012 / 2464 0.83 216 / 2464 0.24

Breeder GA 6 0.66 0.71 0.47 411 / 2464 0.84 733 / 2464 0.23
Cellular GA 8 0.61 0.66 0.37 223 / 2464 0.88 1207 / 2464 0.18

CRO 5 0.69 0.73 0.53 601 / 2464 0.82 460 / 2464 0.22

Table 3: X Pairwise comparison of all evolutionary algorithms. “Better than” and “Worse

than” give the number of comparisons for which the best EA is statistically significantly (i.e., p-

value< 0.05) better and worse, respectively. Columns Â12 give the average effect size.

is only [42%, 46%], and the number of test cases is in the range of [23, 28].581

Note that for both, single and multiple criteria, the EA that generated more582

test cases is the one that achieved the highest coverage (either branch or overall583

coverage) and mutation score.584

Although DynaMOSA achieved the highest coverage and mutation score585

among all algorithms, and is ranked first for both single and multiple criteria,586

it is not clear whether it performs consistently better than any other algorithm587

across all classes under test. In the following sections we perform further anal-588

yses to address this issue and answer our research questions.589

4.1. RQ1 – Which archive-based single-objective evolutionary algorithm per-590

forms best?591

Table 3 summarises the results of a pairwise tournament of all EAs. An EA592

X is considered to be better than an EA Y if it performs significantly better593

on a higher number of comparisons. For example, the (µ, λ) EA was the one594

32

with more positive comparisons (1028) and the least negative comparisons (just595

60) – thus, being the best EA for single criteria. While it is ranked third for596

multiple criteria, it achieved the same branch and overall coverage (72% and597

77%, respectively) as the first ranked EA, i.e., (µ + λ) EA, with an Â12 effect598

size of 62% averaged over all comparisons.599

Figures 2 and 3 illustrate these results visually by showing the proportion of600

classes per coverage interval for single and multiple criterion respectively. For601

example, (µ, λ) EA achieved a branch coverage between 91% and 100% for 63%602

of all classes under test (see Figure 2f), and an overall coverage between 91%603

and 100% for 52% of all classes under test (see Figure 3f). As expected, the best604

EA for single and multiple criteria is the one with the highest ratio of classes605

within the coverage interval]90%, 100%].606

Surprisingly, despite its reported good performance [22] the 1+(λ, λ) EA was607

statistically significantly better only on 120 comparisons for multiple criteria,608

while it was statistically significantly worse on 1,724 comparisons out of 2,464609

– which make it the worst EA in our comparison. A recent study has shown610

that due to the presence of many plateaus in the landscape of a test generation611

problem (and not the number of local optima), crossover has little or no impact612

on the search [38]. Thus, our conjecture is that the worst performance of the613

1 + (λ, λ) EA in our evaluation is due to the fact the only individual in the614

population heavily relies on the outcome of λ crossover operations, which may615

or may not perform successfully (i.e., generate an individual that is better than616

the single one in the population). Another EA that performed poorly is the617

Cellular GA. To the best of our knowledge, this is the first time a Cellular GA618

has been applied to automatic software test generation and therefore it has not619

been studied in detail, for instance, the question which neighbourhood model620

works best for this particular problem still remains.621

RQ1: For a small number of coverage goals a (µ, λ) EA is better than the

other considered evolutionary algorithms, for a large number of coverage goals

a (µ+ λ) EA performed better.

622

33

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.01 0.03 0.02
0.04

0.08 0.08
0.13

0.16

0.44

(a) Standard GA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.02 0.03
0.01 0.02

0.04 0.06
0.09

0.15
0.13

0.45

(b) Monotonic GA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.02 0.02 0.01 0.03
0.06

0.09
0.11

0.13
0.10

0.41

(c) Steady-State GA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.03
0.06

0.10 0.09 0.11 0.10
0.08 0.06

0.09

0.27

(d) 1 + (λ, λ) GA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.01 0.03 0.01 0.02 0.03
0.07 0.09

0.12
0.15

0.46

(e) (µ+ λ) EA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.01 0.02 0.01 0.02 0.03
0.07

0.10 0.11
0.15

0.48

(f) (µ, λ) EA (best).

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.03 0.02 0.02
0.05

0.10
0.07 0.08

0.16

0.11

0.36

(g) Breeder GA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.04 0.03 0.05 0.05
0.09 0.08

0.12 0.11 0.11

0.31

(h) Cellular GA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.04 0.03
0.01

0.04 0.05
0.08 0.10

0.14 0.14

0.38

(i) CRO.

Figure 2: Proportion of classes that have an average branch coverage (averaged out of 30 runs
on all their classes) within each 10% branch coverage interval. X-labels show the upper limit
(inclusive). For example, the group 30% represents all the classes with an average branch
coverage greater than 20% and lower than or equal to 30%.

34

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.02 0.04
0.07 0.09

0.12 0.12

0.21

0.31

(a) Standard GA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 0.02 0.03

0.08
0.10 0.12 0.13

0.21

0.30

(b) Monotonic GA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.01
0.04

0.06
0.09 0.10

0.12
0.16 0.16

0.24

(c) Steady-State GA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.07

0.17
0.14 0.15

0.08
0.06

0.08 0.07

0.16

(d) 1 + (λ, λ) GA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.01 0.02
0.06

0.12 0.10

0.16
0.20

0.32

(e) (µ+ λ) EA (best).

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 0.01 0.03
0.06

0.08

0.15 0.15

0.21

0.31

(f) (µ, λ) EA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 0.00
0.04 0.06

0.09 0.10 0.10

0.16
0.19

0.24

(g) Breeder GA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.01 0.02

0.07 0.06

0.10 0.09
0.14 0.15 0.15

0.21

(h) Cellular GA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.00
0.03 0.04

0.10 0.10 0.11 0.12

0.22

0.27

(i) CRO.

Figure 3: Proportion of classes that have an average overall coverage (averaged out of 30 runs
on all their classes) within each 10% overall coverage interval. X-labels show the upper limit
(inclusive). For example, the group 30% represents all the classes with an average overall
coverage greater than 20% and lower than or equal to 30%.

35

Branch Overall vs. Random Search vs. Random Testing

Algorithm Cov. Cov. Â12 p Â12 p

Search budget of 60 seconds – Single-criteria
Random Search 0.73 — — — 0.64 0.16
Random Testing 0.69 — 0.36 0.16 — —
Standard GA 0.79 — 0.58 0.12 0.70 0.09
Monotonic GA 0.79 — 0.58 0.13 0.70 0.07
Steady-State GA 0.76 — 0.50 0.16 0.63 0.12
1 + (λ, λ) GA 0.61 — 0.38 0.11 0.42 0.11
(µ+ λ) EA 0.79 — 0.59 0.12 0.71 0.08
(µ, λ) EA 0.81 — 0.63 0.11 0.73 0.07

Breeder GA 0.72 — 0.47 0.12 0.56 0.14
Cellular GA 0.67 — 0.37 0.11 0.48 0.11

CRO 0.74 — 0.51 0.13 0.63 0.11

Search budget of 60 seconds – Multiple-criteria
Random Search 0.65 0.64 — — 0.75 0.05
Random Testing 0.55 0.45 0.25 0.05 — —
Standard GA 0.71 0.76 0.67 0.07 0.87 0.02
Monotonic GA 0.71 0.75 0.66 0.07 0.87 0.02
Steady-State GA 0.65 0.70 0.58 0.06 0.81 0.03
1 + (λ, λ) GA 0.48 0.54 0.39 0.05 0.56 0.15
(µ+ λ) EA 0.72 0.77 0.69 0.06 0.89 0.03
(µ, λ) EA 0.72 0.77 0.68 0.06 0.89 0.03

Breeder GA 0.66 0.71 0.60 0.07 0.83 0.03
Cellular GA 0.61 0.66 0.53 0.07 0.78 0.05

CRO 0.69 0.73 0.63 0.07 0.84 0.03

Table 4: Comparison of evolutionary algorithms and two random-based approaches: Random
search and Random testing. Statistically significant effect sizes are shown in bold.

4.2. RQ2 – How does evolutionary search compare to random search and random623

testing?624

Table 4 compares the results of each EA with the two random-based tech-625

niques considered in this study: Random search and Random testing. Both626

random approaches are hardly affected by the number of coverage goals. For in-627

stance, Random testing covers 69% of all branch goals for single criteria, where628

for multiple criteria it only covers 45% of all goals (55% of all branch goals).629

The % of goals covered by Random search decreases from 73% (single criteria)630

to 64% (multiple criteria).631

As we can see in Figure 5, for single criteria all EAs but 1 + (λ, λ) EA and632

Cellular GA achieve higher branch coverage than Random testing. For multiple633

criteria, all EAs achieve higher overall coverage than Random testing, most of634

36

●
●
●●●●

●●

●●
●
●

●●●●
●●●●●●●●

●●
●●●●●●● ●●●●

E
ff
e
c
t
S

iz
e

 A^
1

2

Sta
nd

ar
d G

A

M
on

ot
on

ic
 G

A

Ste
ad

y
−
Sta

te
 G

A

1
+
(λ

 λ
) G

A

(µ
+

λ)
 E

A

(µ
 λ
) E

A

Bre
ed

er
 G

A

C
el
lu
la
r G

A

C
R
O

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Single criteria.

E
ff
e
c
t
S

iz
e

 A^
1

2

Sta
nd

ar
d G

A

M
on

ot
on

ic
 G

A

Ste
ad

y
−
Sta

te
 G

A

1
+
(λ

 λ
) G

A

(µ
+

λ)
 E

A

(µ
 λ
) E

A

Bre
ed

er
 G

A

C
el
lu
la
r G

A

C
R
O

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Multiple criteria.

Figure 4: Effect size Â12 of EA X vs. Random search. Middle line of each boxplot marks the

median, white circles represent the outliers, N represents the mean of a significant effect size greater

than 0.5 (i.e., EA X performs significantly better than Random search), H the mean of a significant

effect size lower than 0.5 (i.e., EA X performs significantly worse than Random search), × the

mean of a no significant effect size.

●● ●
●
●●

E
ff
e
c
t
S

iz
e

 A^
1

2

Sta
nd

ar
d G

A

M
on

ot
on

ic
 G

A

Ste
ad

y
−
Sta

te
 G

A

1
+
(λ

 λ
) G

A

(µ
+

λ)
 E

A

(µ
 λ
) E

A

Bre
ed

er
 G

A

C
el
lu
la
r G

A

C
R
O

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Single criteria.

●●●

●

●●●

●

●●
●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●●
●
●

●●

●
●

●●
●
●

●

●●●●●●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●●●●

●

●
●

●

●

●

●

●●
●

●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●
●
●

●

●

●

●
●●
●

●
●●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●
●●
●
●

●

●●●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

E
ff
e
c
t
S

iz
e

 A^
1

2

Sta
nd

ar
d G

A

M
on

ot
on

ic
 G

A

Ste
ad

y
−
Sta

te
 G

A

1
+
(λ

 λ
) G

A

(µ
+

λ)
 E

A

(µ
 λ
) E

A

Bre
ed

er
 G

A

C
el
lu
la
r G

A

C
R
O

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Multiple criteria.

Figure 5: Effect size Â12 of EA X vs. Random testing. Please refer to Figure 4 for an explanation

of each symbol.

them significantly higher overall coverage. For example, Random testing covers635

45% of all coverage goals for multiple criteria where µ + λ EA covers 77% (an636

effect size Â12 of 0.89 and a p-value of 0.03). When compared to Random637

search (see Figure 4), six out of nine EAs performed better for single criteria638

(i.e., Standard GA, Monotonic GA, Steady-State GA, (µ+ λ) EA, (µ, λ) EA),639

and CRO; and all EAs but 1 + (λ, λ) EA performed better than Random search640

for multiple criteria. This result is different to the earlier study by Shamshiri et641

al. [5], where random achieved similar, and sometimes higher coverage than a642

genetic algorithm. Our conjecture is that the better performance of some EAs643

37

Tourn. Branch Overall Better Worse

Algorithm Position Cov. Cov. Â12 than Â12 than Â12

Search budget of 60 seconds – Single-criteria
MOSA 2 0.82 — 0.63 370 / 924 0.86 51 / 924 0.23

DynaMOSA 1 0.82 — 0.66 391 / 924 0.87 31 / 924 0.26
LIPS 4 0.62 — 0.24 40 / 924 0.83 614 / 924 0.09
MIO 3 0.75 — 0.48 196 / 924 0.89 301 / 924 0.18

Search budget of 60 seconds – Multiple-criteria
MOSA 2 0.79 0.81 0.55 212 / 616 0.85 140 / 616 0.21

DynaMOSA 1 0.84 0.86 0.71 352 / 616 0.85 15 / 616 0.20
LIPS — — — — — — — —
MIO 3 0.68 0.71 0.25 16 / 616 0.80 425 / 616 0.13

Table 5: Pairwise comparison of all many objective algorithms. “Better than” and “Worse

than” give the number of comparisons for which the best EA is statistically significantly (i.e., p-

value< 0.05) better and worse, respectively. Columns Â12 give the average effect size.

in our evaluation is due to (1) the use of the test archive, and (2) the use of644

more complex classes in the experiment.645

RQ2: Evolutionary algorithms (in particular (µ, λ) EA) perform better than

random search and statistically better than random testing.
646

4.3. RQ3 – Which archive-based many-objective evolutionary algorithm per-647

forms best?648

Table 5 summarises the results of a pairwise tournament of all many ob-649

jective algorithms, i.e., MOSA, DynaMOSA, LIPS, and MIO. For both single650

and multiple criteria configurations, DynaMOSA is ranked first (e.g., it was651

statistically significantly better on 391 comparisons and significantly worse on652

only 31 out of 924 comparisons), MOSA is second, followed by MIO and then653

LIPS. As we discussed in RQ1, the most effective algorithm (i.e., the one with654

more positive comparisons) is the one with the highest ratio of classes with a655

coverage between]90%, 100%]. For DynaMOSA, 70% of all classes fall into the656

]90%, 100%] interval, while for MOSA this number is lower at 67%, for MIO at657

54%, and LIPS only managed to achieve coverage in this interval for 35% of658

classes (see Figure 6). For the multiple criteria configuration, for DynaMOSA659

77% of all classes under test fall into the]90%, 100%] interval, for MOSA it is660

62%, and for MIO 42% (see Figure 7).661

38

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.01 0.01 0.01 0.02
0.04 0.04

0.09 0.10

0.18

0.49

(a) MOSA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.01 0.01 0.02 0.01 0.02
0.06

0.08 0.07

0.20

0.50

(b) DynaMOSA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.03
0.05

0.09 0.09 0.09 0.11 0.09 0.10 0.10

0.25

(c) LIPS.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals
R

a
ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.03 0.02 0.02 0.03 0.04

0.09 0.10
0.13

0.15

0.39

(d) MIO.

Figure 6: Proportion of classes that have an average branch coverage (averaged out of 30 runs
on all their classes) within each 10% branch coverage interval. X-labels show the upper limit
(inclusive). For example, the group 30% represents all the classes with an average branch
coverage greater than 20% and lower than or equal to 30%.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 0.01
0.03

0.06
0.11

0.17

0.24

0.38

(a) MOSA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 0.00 0.01
0.04

0.06

0.12

0.30

0.47

(b) DynaMOSA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
a

ti
o

 o
f

C
la

s
s
e

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.01 0.01 0.01
0.03

0.08
0.13

0.16 0.14

0.21 0.21

(c) MIO.

Figure 7: Proportion of classes that have an average overall coverage (averaged out of 30 runs
on all their classes) within each 10% overall coverage interval. X-labels show the upper limit
(inclusive). For example, the group 30% represents all the classes with an average overall
coverage greater than 20% and lower than or equal to 30%.

39

The ranking of many-objective algorithms for single criteria (i.e., branch662

coverage) is in line with previous studies in which DynaMOSA outperformed its663

predecessor MOSA [11], and MOSA in turn was more effective than LIPS [28] at664

generating test cases for Java static methods with purely procedural behaviour.665

Note that although MOSA and DynaMOSA achieve the same branch coverage666

for single criteria on average, DynaMOSA is statistically significantly better on667

more comparisons (391 vs 370) and significantly worse on less comparison (31668

vs 51) than MOSA. Thus, DynaMOSA is statistically better than MOSA. MIO669

achieves a branch coverage of 75% for single criteria, and 71% overall coverage670

for multiple criteria (see Table 6); therefore it is ranked third. This result is dif-671

ferent to two studies conducted by Arcuri [30, 39], where MIO performed better672

than MOSA. Our conjecture is that the testing level influences this difference:673

Arcuri [30, 39] performed an empirical evaluation on the automatic generation674

of system tests, and we performed an empirical evaluation on the automatic675

generation of unit tests. Besides the larger number of coverage goals in system676

testing, a main difference is that system tests are usually computationally more677

expensive to execute than unit test, which would benefit algorithms with small678

populations, such as MIO. On the other hand, algorithms with large popula-679

tions (e.g., Standard GA) would take longer for evaluating the fitness of its680

individuals, and therefore fewer solutions would be explored.681

RQ3: DynaMOSA outperforms the other many-objective algorithms for indi-

vidual and multiple criteria.
682

4.4. RQ4 – How does evolution of whole test suites compare to many-objective683

optimisation of test cases?684

Table 6 compares each EA with the many-objective optimisation algorithms685

MOSA, DynaMOSA, LIPS, and MIO.686

Our results confirm and enhance previous studies [9, 11] by evaluating eight687

different EAs (i.e., Standard GA, Steady-State GA, 1 + (λ, λ) GA, (µ+ λ) EA,688

(µ, λ) EA, Breeder GA, Cellular GA, CRO) in addition to Monotonic GA, and689

show that MOSA and DynaMOSA perform better at optimising test cases than690

40

Branch Overall vs. MOSA vs. DynaMOSA vs. LIPS vs. MIO

Algorithm Cov. Cov. Â12 p Â12 p Â12 p Â12 p

Search budget of 60 seconds – Single-criteria
MOSA 0.82 — — — 0.47 0.31 0.78 0.05 0.64 0.15

DynaMOSA 0.82 — 0.53 0.31 — — 0.78 0.05 0.65 0.12
LIPS 0.62 — 0.22 0.05 0.22 0.05 — — 0.28 0.08
MIO 0.75 — 0.36 0.15 0.35 0.12 0.72 0.08 — —

Standard GA 0.79 — 0.43 0.16 0.41 0.15 0.77 0.05 0.56 0.17
Monotonic GA 0.79 — 0.42 0.15 0.40 0.15 0.76 0.06 0.56 0.15
Steady-State GA 0.76 — 0.36 0.10 0.35 0.11 0.74 0.09 0.47 0.13
1 + (λ, λ) GA 0.61 — 0.28 0.10 0.28 0.09 0.50 0.10 0.35 0.14
(µ+ λ) EA 0.79 — 0.44 0.15 0.42 0.15 0.77 0.05 0.58 0.15
(µ, λ) EA 0.81 — 0.47 0.17 0.45 0.15 0.79 0.05 0.61 0.17

Breeder GA 0.72 — 0.32 0.10 0.31 0.10 0.68 0.08 0.43 0.14
Cellular GA 0.67 — 0.25 0.06 0.24 0.05 0.63 0.09 0.34 0.09

CRO 0.74 — 0.36 0.11 0.34 0.11 0.71 0.07 0.48 0.16

Search budget of 60 seconds – Multiple-criteria
MOSA 0.79 0.81 — — 0.37 0.17 — — 0.72 0.10

DynaMOSA 0.84 0.86 0.63 0.17 — — — — 0.78 0.09
LIPS — — — — — — — — — —
MIO 0.68 0.71 0.28 0.10 0.22 0.09 — — — —

Standard GA 0.71 0.76 0.35 0.10 0.29 0.08 — — 0.60 0.14
Monotonic GA 0.71 0.75 0.35 0.10 0.28 0.09 — — 0.58 0.13
Steady-State GA 0.65 0.70 0.27 0.09 0.22 0.05 — — 0.47 0.11
1 + (λ, λ) GA 0.48 0.54 0.17 0.05 0.14 0.04 — — 0.24 0.08
(µ+ λ) EA 0.72 0.77 0.37 0.12 0.30 0.09 — — 0.63 0.11
(µ, λ) EA 0.72 0.77 0.37 0.14 0.30 0.09 — — 0.62 0.13

Breeder GA 0.66 0.71 0.28 0.10 0.23 0.07 — — 0.48 0.13
Cellular GA 0.61 0.66 0.22 0.07 0.18 0.04 — — 0.40 0.13

CRO 0.69 0.73 0.32 0.11 0.26 0.09 — — 0.53 0.12

Table 6: Comparison of evolutionary algorithms on whole test suites optimisation and many-
objective optimisation algorithms of test cases. Statistically significant effect sizes are shown in

bold.

any EA at optimising test suites for single and multiple criteria (see Figures 8691

and 9). Interestingly, and unlike any other algorithm, DynaMOSA achieves692

higher branch coverage on multiple criteria than on single criteria. This shows693

that DynaMOSA is suitable for optimising a large number of coverage goals694

(which is to be expected in a multiple criteria configuration) without negative695

effects on the final coverage.696

We can only include LIPS in the single criterion scenario; here, all EAs697

performed better than LIPS (see Figure 10). When compared to MIO, only four698

EAs performed better than MIO for both single and multiple criteria: Standard699

GA, Monotonic GA, (µ+ λ) EA, and (µ, λ) EA (see Figure 11).700

41

●

●

●
●

●

●●●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

E
ff
e
c
t
S

iz
e

 A^
1

2

Sta
nd

ar
d G

A

M
on

ot
on

ic
 G

A

Ste
ad

y
−
Sta

te
 G

A

1
+
(λ

 λ
) G

A

(µ
+

λ)
 E

A

(µ
 λ
) E

A

Bre
ed

er
 G

A

C
el
lu
la
r G

A

C
R
O

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Single criteria.

●

●

E
ff
e
c
t
S

iz
e

 A^
1

2

Sta
nd

ar
d G

A

M
on

ot
on

ic
 G

A

Ste
ad

y
−
Sta

te
 G

A

1
+
(λ

 λ
) G

A

(µ
+

λ)
 E

A

(µ
 λ
) E

A

Bre
ed

er
 G

A

C
el
lu
la
r G

A

C
R
O

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Multiple criteria.

Figure 8: Effect size Â12 of EA X vs. MOSA. Please refer to Figure 4 for an explanation of each

symbol.

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●
●

●

●●●●

E
ff
e
c
t
S

iz
e

 A^
1

2

Sta
nd

ar
d G

A

M
on

ot
on

ic
 G

A

Ste
ad

y
−
Sta

te
 G

A

1
+
(λ

 λ
) G

A

(µ
+

λ)
 E

A

(µ
 λ
) E

A

Bre
ed

er
 G

A

C
el
lu
la
r G

A

C
R
O

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Single criteria.

●

●

●
●●

E
ff
e
c
t
S

iz
e

 A^
1

2

Sta
nd

ar
d G

A

M
on

ot
on

ic
 G

A

Ste
ad

y
−
Sta

te
 G

A

1
+
(λ

 λ
) G

A

(µ
+

λ)
 E

A

(µ
 λ
) E

A

Bre
ed

er
 G

A

C
el
lu
la
r G

A

C
R
O

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Multiple criteria.

Figure 9: Effect size Â12 of EA X vs. DynaMOSA. Please refer to Figure 4 for an explanation

of each symbol.

E
ff
e
c
t
S

iz
e

 A^
1

2

Sta
nd

ar
d G

A

M
on

ot
on

ic
 G

A

Ste
ad

y
−
Sta

te
 G

A

1
+
(λ

 λ
) G

A

(µ
+

λ)
 E

A

(µ
 λ
) E

A

Bre
ed

er
 G

A

C
el
lu
la
r G

A

C
R
O

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Single criteria.

Figure 10: Effect size Â12 of EA X vs. LIPS. Please refer to Figure 4 for an explanation of each

symbol.

RQ4: DynaMOSA outperforms any EA at optimising test suites for individual

and multiple criteria.
701

42

●●

●

●●●●●

●

●

●

●●●●

●●

●

●

●
● ●

●●

●

●

●●●

●

●●

●
●●

●●●●●●●●

●

●

●●●●
●

●

●

●

●

●

●●

●

●

●

●●●
●
●
●

●●

●

●

●

●

●

●

●●●

●●

●●●●●

E
ff
e
c
t
S

iz
e

 A^
1

2

Sta
nd

ar
d G

A

M
on

ot
on

ic
 G

A

Ste
ad

y
−
Sta

te
 G

A

1
+
(λ

 λ
) G

A

(µ
+

λ)
 E

A

(µ
 λ
) E

A

Bre
ed

er
 G

A

C
el
lu
la
r G

A

C
R
O

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Single criteria.

E
ff
e
c
t
S

iz
e

 A^
1

2

Sta
nd

ar
d G

A

M
on

ot
on

ic
 G

A

Ste
ad

y
−
Sta

te
 G

A

1
+
(λ

 λ
) G

A

(µ
+

λ)
 E

A

(µ
 λ
) E

A

Bre
ed

er
 G

A

C
el
lu
la
r G

A

C
R
O

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Multiple criteria.

Figure 11: Effect size Â12 of EA X vs. MIO. Please refer to Figure 4 for an explanation of each

symbol.

4.5. Discussion702

Given the results of our study, we now discuss some of the implications and703

insights.704

4.5.1. Does the choice of evolutionary algorithm matter?705

In line with common wisdom on evolutionary algorithms, there is not a sin-706

gle EA that works best in all scenarios. Our experiments do, however, provide707

evidence that the choice of algorithm has a substantial impact in the coverage708

achieved in test generation. For instance, the range of branch coverage achieved709

by each EA for single criteria goes from 61% (1 + (λ, λ) EA) up to 82% (Dy-710

naMOSA), and the overall coverage for multiple criteria from 54% up to 86%711

(see Figure 2). Thus, clearly the choice of evolutionary algorithm matters.712

4.5.2. Does the representation of individuals in an evolutionary algorithm mat-713

ter?714

All EAs except MOSA, DynaMOSA, LIPS, and MIO represent the individ-715

uals of a population as test suites (i.e., a sets of test cases). On the other hand,716

algorithms such as MOSA, DynaMOSA, LIPS, and MIO represent individuals717

as test cases. An interesting question for future work therefore is to study the718

influence of the representation on the effectiveness of the search.719

43

Branch Overall

Algorithm Cov. σ CI Cov. σ CI Â12 #CUT

Search budget of 60 seconds – Single-criteria
Standard GA 1.00 0.01 [1.00, 1.00] — — — 0.94 1
Monotonic GA 0.93 0.08 [0.90, 0.96] — — — 0.76 1
Steady-State GA 0.65 0.05 [0.63, 0.67] — — — 0.84 1

(µ, λ) EA 0.67 0.23 [0.59, 0.75] — — — 0.85 5
MOSA 0.85 0.08 [0.82, 0.88] — — — 0.89 2

DynaMOSA 0.89 0.06 [0.88, 0.92] — — — 0.93 21
MIO 0.69 0.12 [0.65, 0.74] — — — 0.92 3

Table 7: Number of classes on which an EA X performed significantly better than all the
other evaluated EAs. Note: for multiple criteria, no EA performed significantly better than all

the other evaluated EAs for any class under test (CUT).

4.5.3. Is there room for improvements?720

Table 7 reports the number of classes under test to which an EA X performed721

significantly better than all the other evaluated EAs. For instance, for single722

criteria DynaMOSA performed significantly better than all the other EAs for 21723

classes, (µ, λ) EA for 5 classes, MIO for 3 classes, MOSA performed significantly724

better for 2 classes, and Standard GA, Monotonic GA, and Steady-State GA725

for only 1 class. Considering that there are classes on which other EAs (e.g.,726

MIO) performed better than DynaMOSA, there might be potential to improve727

DynaMOSA by incorporating some of MIO’s features into DynaMOSA. For728

example, rather than generating an offspring based on the population, in each729

iteration DynaMOSA could (given a certain probability) sample individuals,730

that still do not satisfy some coverage goals, from the archive as MIO does.731

There may also be potential to develop entirely new search algorithms tailored732

for test generation.733

4.5.4. Technical Limitations734

Overall, there is a large number of classes under test for which EAs were735

able to achieve high coverage. For example, DynaMOSA covered half of all736

classes under test with a branch coverage between 90% and 100%. However,737

there are some classes for which all EAs and random approaches evaluated in738

our empirical study failed to achieve any substantial coverage due to limitations739

44

% Branch Coverage

 0 5 10 15 20 25

AbrirAbstractResources

Battle

battlecryGUI
BrentOptimizer

ClassViewer

Convert

CreateMovePdfAction

ExplorerFrameEventConverter

FeatureManagerUIListener

FoxHuntFrame

Fps370Panel

GlobalPreferencesSheet

InteractionAdjuster

LagoonGUI

Menu

MessageList
MP3

Product

Purchase

Room3D

Salvar

TederFrame

Figure 12: Classes on which all evaluated EAs and random approaches achieved less than 25%
branch coverage. The area of each box is proportional to the number of branches in each class,

and the colour represents the coverage achieved averaged over 30 repetitions.

of the test generation tool. Figure 12 shows the 28 classes on which all EAs and740

all random approaches failed to achieve more than 25% branch coverage. We741

looked closer at three problematic classes that stand out particularly:742

1. Battle class from project feudalismgame, which represents the largest743

area in the figure. It consists of 786 branch goals, however only 1% of all744

goals have been covered. Despite the fact the class Battle is composed745

by eight public methods, all of them are invoked with Java reflection as746

described in the following snippet of code:747

Listing 2: Piece of code from class Battle of project feudalismgame.
748

// Arguments for battle follows the following order: 1) Method name (attack749

// target), e.g., vassal; 2) Attacker’s Name750

public void perform(Collection args) {751

try {752

Iterator argsIter = args.iterator();753

// The following will call a method dinamically according to the item754

// the player wants to buy755

Class aMethod = this.getClass().forName("feudalism.Battle");756

Class[] argType = {String.class};757

45

Method methodObj = aMethod.getMethod((String)argsIter.next(), new758

Class[]{Collection.class});759

methodObj.invoke(this, args);760

GameAutoActions.saveAll();761

} catch (Exception e) {762

e.printStackTrace();763

} }764
765

Thus, in order to cover the methods of the class under test and there-766

fore their branches, EvoSuite would have to generate a string parameter767

exactly as the name of one of the methods. When a string is required,768

EvoSuite either randomly generates one (with a certain probability) or769

uses static / dynamic seeds from the class under test [40]. Static seeds are770

all string constants in the bytecode of the class under test, and dynamic771

seeds are strings observed at runtime, for example, a call to the equals772

method of String class. It would be of interest to extend EvoSuite to773

also seed the name of methods or class fields for cases such as this par-774

ticular one that uses Java reflection to invoke methods of the class under775

test.776

2. MP3 class from project celwars2009, which represents the smallest area777

in the figure (i.e., the smallest class represented in Figure 12). Although778

it only consists of 10 branch goals, EAs only managed to achieve a branch779

coverage of 18%. Although EvoSuite has been extended to support en-780

vironment requirements such as interactions with the file system, console781

inputs, and many non-deterministic functions of the Java Virtual Machine782

(JVM) such as date and time [41], this particular class under test requires783

an MP3 file to successfully exercise the code under test, as described in784

the following snippet of code:785

Listing 3: Piece of code from class MP3 of project celwars2009.
786

public class MP3 extends Thread {787

AudioInputStream in = null;788

46

AudioInputStream din = null;789

String filename = "";790

791

public MP3(String filename) {792

this.filename = filename; this.start();793

}794

795

public void run() {796

AudioInputStream din = null;797

try {798

File file = new File(filename);799

AudioInputStream in = AudioSystem.getAudioInputStream(file);800

AudioFormat baseFormat = in.getFormat();801

// +18 lines of code that are never executed because ’file’ does not802

// point to a valid mp3 file803

} catch (Exception e) {804

e.printStackTrace();805

} finally {806

if (din != null) {807

try { din.close(); } catch(IOException e) { }808

}809

} } }810
811

Without guidance, EvoSuite is unlikely to produce data that represents812

valid MP3 files. To increase the adoption of EvoSuite, it would be of813

interest to extend it to generate not only music files, but also other types814

of files, e.g., image files that could be required to test a graphics editor815

software.816

3. MessageList class from project bpmail. Despite the fact that it only817

consists of 24 branch goals, no EA or random approach was able to cover818

any goal at all. MessageList is an abstract class for which there is no819

concrete class, i.e., a non-abstract class that extends it, in the project.820

Therefore, no new objects of type MessageList could have been created.821

Although EvoSuite has been extended to mock certain type of classes,822

47

e.g., interfaces [42], it will have to be further extended to handle cases such823

as this one, i.e., an abstract class without a concrete class to instantiate.824

These examples suggest that there are fundamental technical challenges825

sometimes prohibiting high code coverage in practice; the choice of search al-826

gorithm in such cases is minor. Consequently, it will be important to drive827

research not only on algorithmic improvements, but to also accompany these828

improvements with advances in the engineering of test generation tools.829

5. Related Work830

Although a common approach in search-based testing is to use genetic al-831

gorithms, numerous other algorithms have been proposed in the domain of832

nature-inspired algorithms, as no algorithm can be best on all domains [34].833

Many researchers compared evolutionary algorithms to solve problems in do-834

mains outside software engineering [43, 44, 45]. Within search-based software835

engineering, comparative studies have been conducted in several domains such836

as discovery of software architectures [46], pairwise testing of software product837

lines [47], test case selection [48], or finding subtle higher order mutants [49].838

In the context of test data generation, Harman and McMinn [50] empirically839

compared GA, Random testing and Hill Climbing for structural test data gen-840

eration. While their results indicate that sophisticated evolutionary algorithms841

can often be outperformed by simpler search techniques, there are more complex842

scenarios (e.g., test data generation for Matlab Simulink models [51]), for which843

evolutionary algorithms are better suited. Ghani et al. [51] compared Simulated844

Annealing (SA) and GA for the test data generation for Matlab Simulink mod-845

els, and their results show that GA performed slightly better than SA. Sahin and846

Akay [52] evaluated Particle Swarm Optimisation (PSO), Differential Evolution847

(DE), Artificial Bee Colony, Firefly Algorithm and Random search algorithms848

on software test data generation benchmark problems, and concluded that some849

algorithms performs better than others depending on the characteristics of the850

problem. Varshney and Mehrotra [53] proposed a DE-based approach to gener-851

ate test data that cover data-flow coverage criteria, and compared the proposed852

48

approach to Random search, GA and PSO with respect to number of genera-853

tions and average percentage coverage. Their results show that the proposed854

DE-based approach is comparable to PSO and has better performance than855

Random search and GA. In contrast to these studies, we consider unit test gen-856

eration, which arguably is a more complex scenario than test data generation,857

and in particular local search algorithms are rarely applied.858

Although often newly proposed algorithms are compared to random search859

as a baseline (usually showing clear improvements), there are some studies that860

show that random search can actually be very efficient for test generation. In861

particular, Shamshiri et al. [5] compared GA against Random search for gener-862

ating test suites, and found almost no difference between the coverage achieved863

by evolutionary search compared to random search. They observed that GAs864

cover more branches when standard fitness functions provide guidance, but most865

branches of the analyzed projects provided no such guidance. Similarly, Sahin866

and Akay [52] showed that Random search is effective on simple problems.867

Recently, Scalabrino et al. [27] compared LIPS (Linearly Independent Path-868

Based Search) and MOSA (Many-Objective Sorting Algorithm) [9] with respect869

to generating test data for C programs. They used 35 simple C functions ex-870

tracted from different open-source C libraries on their evaluation. Results show871

that there are no major differences between LIPS and MOSA when it comes to872

branch coverage. However, authors found that LIPS outperforms MOSA with873

respect to running time, but MOSA produces shorter test suites. Motivated by874

the several threats to the validity of such empirical evaluation (e.g., most sub-875

jects are trivial and can be fully covered in a few seconds), Panichella et al. [28]876

replicated this empirical study by comparing LIPS and MOSA in different set-877

tings: LIPS were implemented within EvoSuite [2] and 33 functions from the878

original benchmark were implemented as Java static methods. Additionally, 37879

static methods were randomly selected from open source libraries, which means880

the evaluation was performed over 70 subjects. Results show that the new LIPS881

implementation is superior than the original implementation given the flexibil-882

ities provided by EvoSuite. They noticed that the new LIPS implementation883

49

reached higher branch coverage using less time budget. Despite these improve-884

ments, results show that MOSA is more effective and efficient than LIPS when885

new and more complex subjects are considered.886

To the best of our knowledge, no study has been conducted to evaluate887

several different evolutionary algorithms in a whole test suite generation context888

and considering a large number of complex classes. As can be seen from this889

overview of comparative studies, it is far from obvious what the best algorithm890

is, since there are large variations between different search problems.891

6. Conclusions892

Although evolutionary algorithms are commonly applied for whole test suite893

generation, there is a lack of evidence on the influence of different algorithms.894

Our study yielded the following key results:895

� The choice of algorithm can have a substantial influence on the perfor-896

mance of whole test suite optimisation, hence tuning is important. While897

EvoSuite provides tuned default values, these values may not be optimal898

for different flavours of evolutionary algorithms.899

� Although previous studies showed little benefit of using a GA over random900

testing, our study shows that on complex classes and with a test archive,901

evolutionary algorithms are on average superior to random testing and902

random search.903

� The Dynamic Many Objective Sorting Algorithm (DynaMOSA) is su-904

perior to whole test suite optimisation and other many objective search905

algorithms.906

It would be of interest to extend our experiments to further search algo-907

rithms. In particular, the use of other non-functional attributes such as read-908

ability [54] suggests the exploration of multi-objective algorithms. Considering909

the variation of results with respect to different configurations and classes under910

test, it would also be of interest to use these insights to develop hyper-heuristics911

that select and adapt the optimal algorithm to the specific problem at hand.912

50

Acknowledgments913

This work is supported by EPSRC project EP/N023978/1, São Paulo Re-914

search Foundation (FAPESP) grant 2015/26044-0, the European Research Coun-915

cil (ERC) under the European Union’s Horizon 2020 research and innovation916

programme (grant agreement No 694277) and the Research Council of Norway917

(grant agreement No 274385).918

References919

[1] G. Fraser, A. Arcuri, Whole Test Suite Generation, IEEE Transactions on920

Software Engineering 39 (2) (2013) 276–291.921

[2] G. Fraser, A. Arcuri, EvoSuite: Automatic Test Suite Generation for922

Object-Oriented Software, in: Proceedings of the 19th ACM SIGSOFT923

symposium and the 13th European conference on Foundations of software924

engineering, ESEC/FSE ’11, ACM, New York, NY, USA, 2011, pp. 416–925

419. doi:10.1145/2025113.2025179.926

URL http://doi.acm.org/10.1145/2025113.2025179927

[3] G. Fraser, A. Arcuri, A Large-Scale Evaluation of Automated Unit Test928

Generation Using EvoSuite, ACM Transactions on Software Engineer-929

ing and Methodology (TOSEM) 24 (2) (2014) 8:1–8:42. doi:10.1145/930

2685612.931

[4] G. Fraser, A. Arcuri, Evolutionary Generation of Whole Test Suites, in:932

Proceedings of the 2011 11th International Conference on Quality Software,933

QSIC ’11, IEEE Computer Society, Washington, DC, USA, 2011, pp. 31–934

40. doi:10.1109/QSIC.2011.19.935

URL http://dx.doi.org/10.1109/QSIC.2011.19936

[5] S. Shamshiri, J. M. Rojas, G. Fraser, P. McMinn, Random or genetic al-937

gorithm search for object-oriented test suite generation?, in: Proceedings938

of the Conference on Genetic and Evolutionary Computation, ACM, 2015,939

pp. 1367–1374.940

51

http://doi.acm.org/10.1145/2025113.2025179
http://doi.acm.org/10.1145/2025113.2025179
http://doi.acm.org/10.1145/2025113.2025179
http://dx.doi.org/10.1145/2025113.2025179
http://doi.acm.org/10.1145/2025113.2025179
http://dx.doi.org/10.1145/2685612
http://dx.doi.org/10.1145/2685612
http://dx.doi.org/10.1145/2685612
http://dx.doi.org/10.1109/QSIC.2011.19
http://dx.doi.org/10.1109/QSIC.2011.19
http://dx.doi.org/10.1109/QSIC.2011.19

[6] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, A. Arcuri, Combining Mul-941

tiple Coverage Criteria in Search-Based Unit Test Generation, in: M. Bar-942

ros, Y. Labiche (Eds.), Search-Based Software Engineering: 7th Interna-943

tional Symposium, SSBSE 2015, Bergamo, Italy, September 5-7, 2015,944

Proceedings, Springer International Publishing, Cham, 2015, pp. 93–108.945

doi:10.1007/978-3-319-22183-0_7.946

URL http://dx.doi.org/10.1007/978-3-319-22183-0_7947

[7] G. Gay, The Fitness Function for the Job: Search-Based Generation of Test948

Suites That Detect Real Faults, in: 2017 IEEE International Conference on949

Software Testing, Verification and Validation (ICST), 2017, pp. 345–355.950

doi:10.1109/ICST.2017.38.951

[8] J. M. Rojas, M. Vivanti, A. Arcuri, G. Fraser, A Detailed Investigation952

of the Effectiveness of Whole Test Suite Generation, Empirical Software953

Engineering.954

[9] A. Panichella, F. M. Kifetew, P. Tonella, Reformulating branch coverage as955

a many-objective optimization problem, in: Software Testing, Verification956

and Validation (ICST), 2015 IEEE 8th International Conference on, IEEE,957

2015, pp. 1–10.958

[10] J. Campos, Y. Ge, G. Fraser, M. Eler, A. Arcuri, An Empirical Evalua-959

tion of Evolutionary Algorithms for Test Suite Generation, in: T. Menzies,960

J. Petke (Eds.), Proceedings of the 9th International Symposium Search-961

Based Software Engineering (SSBSE), Springer International Publishing,962

Cham, 2017, pp. 33–48. doi:10.1007/978-3-319-66299-2_3.963

URL https://doi.org/10.1007/978-3-319-66299-2_3964

[11] A. Panichella, F. Kifetew, P. Tonella, Automated Test Case Generation965

as a Many-Objective Optimisation Problem with Dynamic Selection of the966

Targets, IEEE Transactions on Software Engineering PP (99) (2017) 1–1.967

doi:10.1109/TSE.2017.2663435.968

52

http://dx.doi.org/10.1007/978-3-319-22183-0_7
http://dx.doi.org/10.1007/978-3-319-22183-0_7
http://dx.doi.org/10.1007/978-3-319-22183-0_7
http://dx.doi.org/10.1007/978-3-319-22183-0_7
http://dx.doi.org/10.1007/978-3-319-22183-0_7
http://dx.doi.org/10.1109/ICST.2017.38
https://doi.org/10.1007/978-3-319-66299-2_3
https://doi.org/10.1007/978-3-319-66299-2_3
https://doi.org/10.1007/978-3-319-66299-2_3
http://dx.doi.org/10.1007/978-3-319-66299-2_3
https://doi.org/10.1007/978-3-319-66299-2_3
http://dx.doi.org/10.1109/TSE.2017.2663435

[12] R. Storn, K. Price, Differential Evolution – A Simple and Efficient Heuristic969

for global Optimization over Continuous Spaces, Journal of Global Opti-970

mization 11 (4) (1997) 341–359. doi:10.1023/A:1008202821328.971

[13] J. Knowles, D. Corne, The Pareto archived evolution strategy: a new972

baseline algorithm for Pareto multiobjective optimisation, in: Proceed-973

ings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.974

99TH8406), Vol. 1, 1999, p. 105 Vol. 1. doi:10.1109/CEC.1999.781913.975

[14] S. Salcedo-Sanz, J. Del Ser, I. Landa-Torres, S. Gil-López, J. Portilla-976

Figueras, The Coral Reefs Optimization Algorithm: A Novel Metaheuristic977

for Efficiently Solving Optimization Problems, The Scientific World Jour-978

nal 2014. doi:10.1155/2014/739768.979

URL http://dx.doi.org/10.1155/2014/739768980

[15] G. Fraser, A. Arcuri, Handling Test Length Bloat, Software Testing, Verifi-981

cation and Reliability (STVR) 23 (7) (2013) 553–582. doi:10.1002/stvr.982

1495.983

URL http://dx.doi.org/10.1002/stvr.1495984

[16] P. McMinn, Search-based Software Test Data Generation: A Survey, Soft-985

ware Testing, Verification and Reliability 14 (2) (2004) 105–156. doi:986

10.1002/stvr.v14:2.987

URL http://dx.doi.org/10.1002/stvr.v14:2988

[17] J. Wegener, A. Baresel, H. Sthamer, Evolutionary Test Environment989

for Automatic Structural Testing, Information and Software Tech-990

nology 43 (14) (2001) 841–854. doi:http://dx.doi.org/10.1016/991

S0950-5849(01)00190-2.992

URL http://www.sciencedirect.com/science/article/pii/993

S0950584901001902994

[18] A. Arcuri, It Does Matter How You Normalise the Branch Distance in995

Search Based Software Testing, in: Software Testing, Verification and Vali-996

53

http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/CEC.1999.781913
http://dx.doi.org/10.1155/2014/739768
http://dx.doi.org/10.1155/2014/739768
http://dx.doi.org/10.1155/2014/739768
http://dx.doi.org/10.1155/2014/739768
http://dx.doi.org/10.1155/2014/739768
http://dx.doi.org/10.1002/stvr.1495
http://dx.doi.org/10.1002/stvr.1495
http://dx.doi.org/10.1002/stvr.1495
http://dx.doi.org/10.1002/stvr.1495
http://dx.doi.org/10.1002/stvr.1495
http://dx.doi.org/10.1002/stvr.v14:2
http://dx.doi.org/10.1002/stvr.v14:2
http://dx.doi.org/10.1002/stvr.v14:2
http://dx.doi.org/10.1002/stvr.v14:2
http://dx.doi.org/10.1002/stvr.v14:2
http://www.sciencedirect.com/science/article/pii/S0950584901001902
http://www.sciencedirect.com/science/article/pii/S0950584901001902
http://www.sciencedirect.com/science/article/pii/S0950584901001902
http://dx.doi.org/http://dx.doi.org/10.1016/S0950-5849(01)00190-2
http://dx.doi.org/http://dx.doi.org/10.1016/S0950-5849(01)00190-2
http://dx.doi.org/http://dx.doi.org/10.1016/S0950-5849(01)00190-2
http://www.sciencedirect.com/science/article/pii/S0950584901001902
http://www.sciencedirect.com/science/article/pii/S0950584901001902
http://www.sciencedirect.com/science/article/pii/S0950584901001902

dation (ICST), 2010 Third International Conference on, 2010, pp. 205–214.997

doi:10.1109/ICST.2010.17.998

[19] D. C. Karnopp, Random search techniques for optimization problems, Au-999

tomatica 1 (2-3) (1963) 111–121.1000

[20] H. Mühlenbein, D. Schlierkamp-Voosen, Predictive Models for the Breeder1001

Genetic Algorithm I. Continuous Parameter Optimization, Evolutionary1002

Computation 1 (1) (1993) 25–49. doi:10.1162/evco.1993.1.1.25.1003

URL http://dx.doi.org/10.1162/evco.1993.1.1.251004

[21] E. Alba, B. Dorronsoro, Cellular Genetic Algorithms, Operations Re-1005

search/Computer Science Interfaces Series, Springer US, 2009.1006

[22] B. Doerr, C. Doerr, F. Ebel, From black-box complexity to designing new1007

genetic algorithms, Theoretical Computer Science 567 (2015) 87–104.1008

[23] I. Rechenberg, Evolutionsstrategien, in: Simulationsmethoden in der Medi-1009

zin und Biologie, Springer, 1978, pp. 83–114.1010

[24] A. Y. S. Lam, V. O. K. Li, Chemical-Reaction-Inspired Metaheuristic for1011

Optimization, IEEE Transactions on Evolutionary Computation 14 (3)1012

(2010) 381–399. doi:10.1109/TEVC.2009.2033580.1013

[25] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by Simulated1014

Annealing, Science 220 (4598) (1983) 671–680. doi:10.1126/science.1015

220.4598.671.1016

URL http://www.sciencemag.org/content/220/4598/671.abstract1017

[26] A. Y. S. Lam, V. O. K. Li, Chemical Reaction Optimization: a1018

tutorial, Memetic Computing 4 (1) (2012) 3–17. doi:10.1007/1019

s12293-012-0075-1.1020

URL https://doi.org/10.1007/s12293-012-0075-11021

[27] S. Scalabrino, G. Grano, D. Di Nucci, R. Oliveto, A. De Lucia, Search-1022

Based Testing of Procedural Programs: Iterative Single-Target or Multi-1023

54

http://dx.doi.org/10.1109/ICST.2010.17
http://dx.doi.org/10.1162/evco.1993.1.1.25
http://dx.doi.org/10.1162/evco.1993.1.1.25
http://dx.doi.org/10.1162/evco.1993.1.1.25
http://dx.doi.org/10.1162/evco.1993.1.1.25
http://dx.doi.org/10.1162/evco.1993.1.1.25
http://dx.doi.org/10.1109/TEVC.2009.2033580
http://www.sciencemag.org/content/220/4598/671.abstract
http://www.sciencemag.org/content/220/4598/671.abstract
http://www.sciencemag.org/content/220/4598/671.abstract
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://www.sciencemag.org/content/220/4598/671.abstract
https://doi.org/10.1007/s12293-012-0075-1
https://doi.org/10.1007/s12293-012-0075-1
https://doi.org/10.1007/s12293-012-0075-1
http://dx.doi.org/10.1007/s12293-012-0075-1
http://dx.doi.org/10.1007/s12293-012-0075-1
http://dx.doi.org/10.1007/s12293-012-0075-1
https://doi.org/10.1007/s12293-012-0075-1

target Approach?, Springer International Publishing, Cham, 2016, pp. 64–1024

79. doi:10.1007/978-3-319-47106-8_5.1025

[28] A. Panichella, F. M. Kifetew, P. Tonella, LIPS vs MOSA: A Replicated Em-1026

pirical Study on Automated Test Case Generation, Springer International1027

Publishing, Cham, 2017, pp. 83–98. doi:10.1007/978-3-319-66299-2_6.1028

[29] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-dominated1029

sorting genetic algorithm for multi-objective optimization: NSGA-II,1030

in: International Conference on Parallel Problem Solving From Nature,1031

Springer, 2000, pp. 849–858.1032

[30] A. Arcuri, Many Independent Objective (MIO) Algorithm for Test Suite1033

Generation, Springer International Publishing, Cham, 2017, pp. 3–17. doi:1034

10.1007/978-3-319-66299-2_1.1035

[31] A. Arcuri, G. Fraser, Parameter tuning or default values? an empirical1036

investigation in search-based software engineering, Empirical Software En-1037

gineering 18 (3) (2013) 594–623.1038

[32] S. Nakagawa, A farewell to Bonferroni: the problems of low statisti-1039

cal power and publication bias, Behavioral Ecology 15 (6) (2004) 1044–1040

1045. arXiv:/oup/backfile/content_public/journal/beheco/15/6/1041

10.1093_beheco_arh107/2/arh107.pdf, doi:10.1093/beheco/arh107.1042

URL http://dx.doi.org/10.1093/beheco/arh1071043

[33] T. V. Perneger, What’s wrong with Bonferroni adjustments, British Med-1044

ical Journal 316 (7139) (1998) 1236–1238. doi:10.1136/bmj.316.7139.1045

1236.1046

URL https://doi.org/10.1136%2Fbmj.316.7139.12361047

[34] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization,1048

IEEE transactions on evolutionary computation 1 (1) (1997) 67–82.1049

55

http://dx.doi.org/10.1007/978-3-319-47106-8_5
http://dx.doi.org/10.1007/978-3-319-66299-2_6
http://dx.doi.org/10.1007/978-3-319-66299-2_1
http://dx.doi.org/10.1007/978-3-319-66299-2_1
http://dx.doi.org/10.1007/978-3-319-66299-2_1
http://dx.doi.org/10.1093/beheco/arh107
http://dx.doi.org/10.1093/beheco/arh107
http://dx.doi.org/10.1093/beheco/arh107
http://arxiv.org/abs//oup/backfile/content_public/journal/beheco/15/6/10.1093_beheco_arh107/2/arh107.pdf
http://arxiv.org/abs//oup/backfile/content_public/journal/beheco/15/6/10.1093_beheco_arh107/2/arh107.pdf
http://arxiv.org/abs//oup/backfile/content_public/journal/beheco/15/6/10.1093_beheco_arh107/2/arh107.pdf
http://dx.doi.org/10.1093/beheco/arh107
http://dx.doi.org/10.1093/beheco/arh107
https://doi.org/10.1136%2Fbmj.316.7139.1236
http://dx.doi.org/10.1136/bmj.316.7139.1236
http://dx.doi.org/10.1136/bmj.316.7139.1236
http://dx.doi.org/10.1136/bmj.316.7139.1236
https://doi.org/10.1136%2Fbmj.316.7139.1236

[35] S. Shamshiri, J. M. Rojas, L. Gazzola, G. Fraser, P. McMinn, L. Mariani,1050

A. Arcuri, Random or Evolutionary Search for Object-Oriented Test Suite1051

Generation?, Software Testing, Verification and Reliability.1052

[36] T. Jansen, K. A. De Jong, I. Wegener, On the choice of the offspring pop-1053

ulation size in evolutionary algorithms, Evolutionary Computation 13 (4)1054

(2005) 413–440.1055

[37] Evolutionary Algorithms study – full data, http://www.evosuite.1056

org/experimental-data/evolutionary-algorithm-study/, [Online; ac-1057

cessed June-2008] (2018).1058

[38] A. Aleti, I. Moser, L. Grunske, Analysing the Fitness Landscape of Search-1059

based Software Testing Problems, Automated Software Engineering 24 (3)1060

(2017) 603–621. doi:10.1007/s10515-016-0197-7.1061

URL https://doi.org/10.1007/s10515-016-0197-71062

[39] A. Arcuri, Test suite generation with the Many Independent1063

Objective (MIO) algorithm, Information and Software Technol-1064

ogydoi:https://doi.org/10.1016/j.infsof.2018.05.003.1065

URL http://www.sciencedirect.com/science/article/pii/1066

S09505849173048221067

[40] J. M. Rojas, G. Fraser, A. Arcuri, Seeding Strategies in Search-based Unit1068

Test Generation, Software Testing, Verification & Reliability 26 (5) (2016)1069

366–401. doi:10.1002/stvr.1601.1070

URL https://doi.org/10.1002/stvr.16011071

[41] A. Arcuri, G. Fraser, J. P. Galeotti, Automated Unit Test Generation1072

for Classes with Environment Dependencies, in: Proceedings of the 29th1073

ACM/IEEE International Conference on Automated Software Engineer-1074

ing, ASE ’14, ACM, New York, NY, USA, 2014, pp. 79–90. doi:10.1145/1075

2642937.2642986.1076

URL http://doi.acm.org/10.1145/2642937.26429861077

56

http://www.evosuite.org/experimental-data/evolutionary-algorithm-study/
http://www.evosuite.org/experimental-data/evolutionary-algorithm-study/
http://www.evosuite.org/experimental-data/evolutionary-algorithm-study/
https://doi.org/10.1007/s10515-016-0197-7
https://doi.org/10.1007/s10515-016-0197-7
https://doi.org/10.1007/s10515-016-0197-7
http://dx.doi.org/10.1007/s10515-016-0197-7
https://doi.org/10.1007/s10515-016-0197-7
http://www.sciencedirect.com/science/article/pii/S0950584917304822
http://www.sciencedirect.com/science/article/pii/S0950584917304822
http://www.sciencedirect.com/science/article/pii/S0950584917304822
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2018.05.003
http://www.sciencedirect.com/science/article/pii/S0950584917304822
http://www.sciencedirect.com/science/article/pii/S0950584917304822
http://www.sciencedirect.com/science/article/pii/S0950584917304822
https://doi.org/10.1002/stvr.1601
https://doi.org/10.1002/stvr.1601
https://doi.org/10.1002/stvr.1601
http://dx.doi.org/10.1002/stvr.1601
https://doi.org/10.1002/stvr.1601
http://doi.acm.org/10.1145/2642937.2642986
http://doi.acm.org/10.1145/2642937.2642986
http://doi.acm.org/10.1145/2642937.2642986
http://dx.doi.org/10.1145/2642937.2642986
http://dx.doi.org/10.1145/2642937.2642986
http://dx.doi.org/10.1145/2642937.2642986
http://doi.acm.org/10.1145/2642937.2642986

[42] A. Arcuri, G. Fraser, R. Just, Private API Access and Functional Mocking1078

in Automated Unit Test Generation, in: 2017 IEEE International Confer-1079

ence on Software Testing, Verification and Validation (ICST), 2017, pp.1080

126–137. doi:10.1109/ICST.2017.19.1081

[43] A. Basak, J. Lohn, A comparison of evolutionary algorithms on a set of1082

antenna design benchmarks, in: L. G. de la Fraga (Ed.), 2013 IEEE Con-1083

ference on Evolutionary Computation, Vol. 1, Cancun, Mexico, 2013, pp.1084

598–604.1085

[44] M. Wolfram, A. K. Marten, D. Westermann, A comparative study of evolu-1086

tionary algorithms for phase shifting transformer setting optimization, in:1087

2016 IEEE International Energy Conference (ENERGYCON), 2016, pp.1088

1–6. doi:10.1109/ENERGYCON.2016.7514056.1089

[45] E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary1090

algorithms: Empirical results, Evolutionary computation 8 (2) (2000) 173–1091

195.1092

[46] A. Ramı́rez, J. R. Romero, S. Ventura, A comparative study of many-1093

objective evolutionary algorithms for the discovery of software architec-1094

tures, Empirical Softw. Engg. 21 (6) (2016) 2546–2600. doi:10.1007/1095

s10664-015-9399-z.1096

[47] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano, A. Egyed, E. Alba, Com-1097

parative analysis of classical multi-objective evolutionary algorithms and1098

seeding strategies for pairwise testing of software product lines, in: Pro-1099

ceedings of the IEEE Congress on Evolutionary Computation, CEC, 2014,1100

pp. 387–396.1101

[48] A. P. Agrawal, A. Kaur, A comprehensive comparison of ant colony and1102

hybrid particle swarm optimization algorithms through test case selection,1103

in: Data Engineering and Intelligent Computing, Springer Singapore, Sin-1104

gapore, 2018, pp. 397–405.1105

57

http://dx.doi.org/10.1109/ICST.2017.19
http://dx.doi.org/10.1109/ENERGYCON.2016.7514056
http://dx.doi.org/10.1007/s10664-015-9399-z
http://dx.doi.org/10.1007/s10664-015-9399-z
http://dx.doi.org/10.1007/s10664-015-9399-z

[49] E. Omar, S. Ghosh, D. Whitley, Comparing search techniques for finding1106

subtle higher order mutants, in: Proceedings of the Conference on Genetic1107

and Evolutionary Computation, GECCO ’14, ACM, 2014, pp. 1271–1278.1108

doi:10.1145/2576768.2598286.1109

[50] M. Harman, P. McMinn, A Theoretical & Empirical Analysis of Evolu-1110

tionary Testing and Hill Climbing for Structural Test Data Generation,1111

in: Proceedings of the 2007 International Symposium on Software Testing1112

and Analysis, ISSTA ’07, ACM, New York, NY, USA, 2007, pp. 73–83.1113

doi:10.1145/1273463.1273475.1114

URL http://doi.acm.org/10.1145/1273463.12734751115

[51] K. Ghani, J. A. Clark, Y. Zhan, Comparing algorithms for search-based1116

test data generation of matlab simulink models, in: 2009 IEEE Congress1117

on Evolutionary Computation, 2009, pp. 2940–2947. doi:10.1109/CEC.1118

2009.4983313.1119

[52] O. Sahin, B. Akay, Comparisons of metaheuristic algorithms and fitness1120

functions on software test data generation, Applied Soft Computing 491121

(2016) 1202 – 1214.1122

[53] S. Varshney, M. Mehrotra, A differential evolution based approach to gen-1123

erate test data for data-flow coverage, in: 2016 International Conference on1124

Computing, Communication and Automation (ICCCA), 2016, pp. 796–801.1125

doi:10.1109/CCAA.2016.7813848.1126

[54] E. Daka, J. Campos, G. Fraser, J. Dorn, W. Weimer, Modeling Readability1127

to Improve Unit Tests, in: Proceedings of the 2015 10th Joint Meeting on1128

Foundations of Software Engineering, ESEC/FSE 2015, ACM, New York,1129

NY, USA, 2015, pp. 107–118. doi:10.1145/2786805.2786838.1130

URL http://doi.acm.org/10.1145/2786805.27868381131

58

http://dx.doi.org/10.1145/2576768.2598286
http://doi.acm.org/10.1145/1273463.1273475
http://doi.acm.org/10.1145/1273463.1273475
http://doi.acm.org/10.1145/1273463.1273475
http://dx.doi.org/10.1145/1273463.1273475
http://doi.acm.org/10.1145/1273463.1273475
http://dx.doi.org/10.1109/CEC.2009.4983313
http://dx.doi.org/10.1109/CEC.2009.4983313
http://dx.doi.org/10.1109/CEC.2009.4983313
http://dx.doi.org/10.1109/CCAA.2016.7813848
http://doi.acm.org/10.1145/2786805.2786838
http://doi.acm.org/10.1145/2786805.2786838
http://doi.acm.org/10.1145/2786805.2786838
http://dx.doi.org/10.1145/2786805.2786838
http://doi.acm.org/10.1145/2786805.2786838

	1 Introduction
	2 Evolutionary Algorithms for Test Suite Generation
	2.1 Representation
	2.2 Optimisation Goals and Archives
	2.3 Random Search & Random Testing
	2.4 Genetic Algorithms
	2.5 Evolution Strategies
	2.6 Chemical Reaction Optimisation (CRO)
	2.7 Linearly Independent Path based Search (LIPS) Algorithm
	2.8 Many-Objective Sorting Algorithm
	2.9 Many Independent Objective (MIO) Algorithm

	3 Empirical Study
	3.1 Experimental Setup
	3.1.1 Selection of Classes Under Test
	3.1.2 Unit Test Generation Tool
	3.1.3 Experiment Procedure
	3.1.4 Experiment Analysis
	3.1.5 Threats to Validity

	3.2 Parameter Tuning

	4 Experiment Results
	4.1 RQ1 – Which archive-based single-objective evolutionary algorithm performs best?
	4.2 RQ2 – How does evolutionary search compare to random search and random testing?
	4.3 RQ3 – Which archive-based many-objective evolutionary algorithm performs best?
	4.4 RQ4 – How does evolution of whole test suites compare to many-objective optimisation of test cases?
	4.5 Discussion
	4.5.1 Does the choice of evolutionary algorithm matter?
	4.5.2 Does the representation of individuals in an evolutionary algorithm matter?
	4.5.3 Is there room for improvements?
	4.5.4 Technical Limitations

	5 Related Work
	6 Conclusions

