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ABSTRACT
Automated test generation techniques can efficiently produce test
data that systematically cover structural aspects of a program. In
the absence of a specification, a common assumption is that these
tests relieve a developer of most of the work, as the act of testing
is reduced to checking the results of the tests. Although this as-
sumption has persisted for decades, there has been no conclusive
evidence to date confirming it. However, the fact that the approach
has only seen a limited uptake in industry suggests the contrary, and
calls into question its practical usefulness. To investigate this issue,
we performed a controlled experiment comparing a total of 49 sub-
jects split between writing tests manually and writing tests with the
aid of an automated unit test generation tool, EVOSUITE. We found
that, on one hand, tool support leads to clear improvements in com-
monly applied quality metrics such as code coverage (up to 300%
increase). However, on the other hand, there was no measurable
improvement in the number of bugs actually found by developers.
Our results not only cast some doubt on how the research commu-
nity evaluates test generation tools, but also point to improvements
and future work necessary before automated test generation tools
will be widely adopted by practitioners.

Categories and Subject Descriptors. D.2.5 [Software Engineer-
ing]: Testing and Debugging – Testing Tools;

General Terms. Algorithms, Experimentation, Reliability, Theory

Keywords. Unit testing, automated test generation, branch cover-
age, empirical software engineering

1. INTRODUCTION
Controlled empirical studies involving human subjects are not

common in software engineering. A recent survey by Sjoberg et
al. [28] showed that out of 5,453 analyzed software engineering
articles, only 1.9% included a controlled study with human sub-
jects. For software testing, several novel techniques and tools have
been developed to automate and solve different kinds of problems
and tasks—however, they have, in general, only been evaluated us-
ing surrogate measures (e.g., code coverage), and not with human
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testers—leaving unanswered the more directly relevant question:
Does technique X really help software testers?

This paper addresses this question in the context of automated
white-box test generation, a research area that has received much
attention of late (e.g., [8, 12, 18, 31, 32]). When using white-box
test generation, a developer need not manually write the entire test
suite, and can instead automatically generate a set of test inputs
that systematically exercise a program (for example, by covering
all branches), and only need check that the outputs for the test in-
puts match those expected. Although the benefits for the developer
seem obvious, there is little evidence that it is effective for practical
software development. Manual testing is still dominant in industry,
and research tools are commonly evaluated in terms of code cover-
age achieved and other automatically measurable metrics that can
be applied without the involvement of actual end-users.

In order to determine if automated test generation is really help-
ful for software testing in a scenario without automated oracles, we
performed a controlled experiment involving 49 human subjects.
Subjects were given one of three Java classes containing seeded
faults and were asked to construct a JUnit test suite either manu-
ally, or with the assistance of the automated white-box test genera-
tion tool EVOSUITE [8]. EVOSUITE automatically produces JUnit
test suites that target branch coverage, and these unit tests contain
assertions that reflect the current behaviour of the class [10]. Con-
sequently, if the current behaviour is faulty, the assertions reflecting
the incorrect behaviour must be corrected. The performance of the
subjects was measured in terms of coverage, seeded faults found,
mutation score, and erroneous tests produced.

Our study yields three key results:
1. The experiment results confirm that tools for automated test

generation are effective at what they are designed to do—
producing test suites with high code coverage—when com-
pared with those constructed by humans.

2. The study does not confirm that using automated tools de-
signed for high coverage actually helps in finding faults. In
our experiments, subjects using EVOSUITE found the same
number of faults as manual testers, and during subsequent
mutation analysis, test suites did not always have higher mu-
tation scores.

3. Investigating how test suites evolve over the course of a test-
ing session revealed that there is a need to re-think test gen-
eration tools: developers seem to spend most of their time
analyzing what the tool produces. If the tool produces a poor
initial test suite, this is clearly detrimental for testing.

These results, as well as qualitative feedback from the study par-
ticipants, point out important issues that need to be addressed in
order to produce tools that make automated test generation without
specifications practicably useful for testing.



Figure 1: The EVOSUITE Eclipse plugin, generating test cases
for a class—as used by subjects in the study.

2. EXPERIMENTAL METHODOLOGY
The purpose of this study was to investigate how the use of an

automatic test generation tool, when used by testers, impacts the
testing process compared to traditional manual testing. Our study
was designed around a testing scenario in which a Java class has
been developed and a test suite needs to be constructed, both to
reveal faults in the newly created class and for later use in regres-
sion testing. We therefore designed our study around the following
research questions (RQs):

How does the use of an automated testing tool impact . . .

RQ1 The structural code coverage achieved during testing?
RQ2 The ability of testers to detect faults in the class under test?
RQ3 The number of tests mismatching the specified behaviour?
RQ4 The ability of produced test suites to detect regression faults?

2.1 The Automated Testing Tool: EvoSuite
The automated testing tool used in our study is EVOSUITE [8],

which automatically produces JUnit test suites for a given Java
class. As input it requires the Java bytecode of the class under test,
along with its dependencies. EVOSUITE supports different cover-
age criteria, where the default criterion is branch coverage over the
Java bytecode. Internally, it uses a genetic algorithm to evolve can-
didate test suites according to the chosen coverage criterion, using a
fitness function [8]. When EVOSUITE has achieved 100% coverage
or hits another stopping condition (e.g., a timeout), the best individ-
ual in the search population is post-processed to (1) reduce the size
of the test suite while maintaining coverage achieved and (2) add
JUnit assertions to the test cases. As EVOSUITE assumes no speci-
fication, these assertions reflect the observed behaviour rather than
the intended behaviour. The selection is based on mutation anal-
ysis, and the assertions of the final test suite are minimized with
respect to the set of mutants they can expose [10].

For large scale experimentation, EVOSUITE can be used as a
command-line tool. However, for our experiment, the Eclipse plu-
gin was used (shown in Figure 1), with which the user can pro-
duce a test suite for a class by right-clicking its name in the project
explorer. The Eclipse plugin usually only exposes two of EVO-
SUITE’s many available configuration properties. However, in our
experiments these were fixed: the time for test generation was set
to one minute (this does not include time spent for minimization or
assertion generation), and assertion generation was enabled.

Table 1: Study objects
“LOC” refers to the number of non-commenting source code lines reported by
JavaNCSS (http://www.kclee.de/clemens/java/javancss), “Branches” is the number of
branches reported by EVOSUITE, while “Mutants” is the number of mutants created
by the MAJOR tool [14].

Project Class LOC Methods Branches Mutants

XOM DocType 296 26 242 186
Commons CLI Option 155 42 96 140
Math4J Rational 61 19 36 112

2.2 Study Subject and Object Selection
Running an empirical study involving human subjects leads to

several challenges and possible pitfalls. Guidelines exist in the lit-
erature to help researchers to carry out such type of studies (e.g.,
see [15,27]). A common problem with controlled empirical studies
is that, due to their cost and complexity, they are often limited in
size. This reduces the power of the statistical analyses. For exam-
ple, the studies surveyed by Sjoberg et al. [28] involved between 4
and 266 participants (49 on average). Of these participants, 87%
were students. Furthermore, in 75% of the cases, the applications
used in the experiments were constructed for the sole purpose of
running those experiments.

2.2.1 Object Selection
As the number of subjects available to us was limited, we re-

stricted our experiment to three Java classes to increase the likeli-
hood of observing statistically significant effects. The classes were
chosen manually, based on the following criteria:

1. EVOSUITE should be able to generate test suites with high
coverage, as addressing cases where test generation strug-
gles [7] is an ongoing research area. This excludes all classes
with I/O dependencies and classes using Java Generics.

2. The source code documentation needs to be sufficient to serve
as a specification. In particular, we required JavaDoc com-
ments for all methods of the class.

3. The classes should not require the subjects to learn and un-
derstand complicated algorithms.

4. The classes should be non-trivial, yet feasible to reasonably
test within an hour. In particular, we considered classes with
fewer than 100 lines of code or classes without conditional
expressions as too easy.

5. The classes should be understandable without extensively ex-
amining other classes in the same library. Notably, there
should be neither many dependencies nor complex inheri-
tance hierarchies.

6. Each class file should only involve one class definition (i.e.,
the class should not involve member classes).

7. The classes should represent three different types of applica-
tions and testing scenarios. In particular, we aimed to include
one numeric class and one class dependent on string inputs.

We investigated the libraries used in our earlier experiments [8,
17], and identified a set of 25 candidate classes largely matching
our criteria from the NanoXML, Commons CLI, Commons Math,
Commons Collections, java.util, JDom, Joda Time and XOM li-
braries. We then identified several candidate classes of appropriate
difficulty by first writing test suites for them ourselves, and ran a
pilot study with volunteer subjects (who were not included later in
the main experiment) on Commons CLI Option, Commons Math
Fraction, and XOM Attribute. Seeing that even seasoned program-
mers required significantly longer than an hour for Fraction and
Attribute, we replaced these classes with the similar but simpler
Rational from the Math4J library and DocType from XOM.



Details of the classes used in the experiment can be found in Ta-
ble 1. XOM is a tree-based API for processing XML documents
(http://www.xom.nu), with DocType representing an XML docu-
ment type declaration, which appears at the header of an XML file
(e.g., “<!DOCTYPE html>”), potentially giving further details re-
garding a DTD. Option is part of the Apache Commons CLI API
(http://commons.apache.org/cli) for parsing common line options
passed to programs. The class represents a single command-line
option (e.g., “-a”, “--all”, “-param <value>”, etc.), including
its short name, long name, whether the option is mandatory, and a
short accompanying descriptor. Finally, Rational, from the Math4J
project (http://math4j.sourceforge.net), represents a rational num-
ber.

Each Java class was injected with five faults prior to the exper-
iment using the MAJOR [14] mutation analysis tool. We used
the following procedure to select injected faults: For each of the
classes, we used EVOSUITE to produce 1,000 random test cases
with assertions. We then calculated the number of test cases killing
each mutant produced by MAJOR (i.e., an assertion generated by
EVOSUITE fails), thus estimating the difficulty of killing the mu-
tant. Next, we partitioned all killed mutants into five equally sized
buckets of increasing difficulty of being killed. From each of these
buckets, we randomly selected one mutant, while prohibiting the
selection of multiple mutants in the same method. All five selected
mutants were applied to the class, producing the faulty version
given to the subjects.

2.2.2 Subject Selection and Assignment
Email invitations to participate were sent to industrial contacts,

as well as students and post-doctoral research assistants in the De-
partment of Computer Science at the University of Sheffield. Due
to physical laboratory space restrictions, only the first 50 people
who responded were allowed to participate. One person failed to
attend the experiment, leaving a total of 49, of which five were
industrial practitioners and 44 from the Computer Science depart-
ment. Of the five industrial developers, one was a Java programmer
while the other four were web developers from a local software
company. Of the 44 subjects from the Computer Science depart-
ment, two were post-doctoral research assistants, eight were PhD
students and the rest were second year or higher undergraduate stu-
dents. Each subject had prior experience with Java and testing us-
ing JUnit (or similar, i.e., xUnit for a different programming lan-
guage).

Before starting the experiment, we produced a fixed assignment
of subject ID to class and technique, so that we had roughly the
same number of subjects for each class and technique pairing. We
assigned successive subject IDs to the computers in the lab, such
that any two neighbouring subjects would be working on different
classes with different techniques. Subjects freely chose their com-
puters before any details of the study were revealed.

2.3 Experiment Process
Each subject received an experiment pack, consisting of their

subject ID, a statement of consent, a background questionnaire, in-
structions to launch the experiment, and an exit survey. The pack
also contained a sheet describing their target Java class and whether
the subject was asked to test manually or using EVOSUITE. For
those testing with EVOSUITE, the pack included further instruc-
tions on launching the EVOSUITE plugin.

Before commencing the experiment, each subject was required
to fill in the questionnaire based on their background and program-
ming experience. Subjects were then presented with a short tutorial
of approximately 15 minutes, which provided a refresher of JUnit

annotation syntax, along with the different assertion types avail-
able, and their various parameters. The tutorial further included
screencasts demonstrating the use of Eclipse and the EVOSUITE
tool. The slides of the presentation were made available as individ-
ual crib sheets for reference during the study.

Following the tutorial, subjects were given a short warm-up ex-
ercise to reacquaint themselves with Eclipse and JUnit, and to be-
come familiar with the EVOSUITE plugin. The exercise consisted
of an artificial ATM example class, including an intentional bug
highlighted with code comments. Subjects were asked to write and
run JUnit test cases, and to produce test suites with the EVOSUITE
plugin. During this exercise, we interacted with the subjects to en-
sure that everybody had sufficient understanding of the involved
tools and techniques.

After a short break the study commenced. To initiate the exper-
iment, each subject entered their subject ID on a web page, which
displayed a customized command to be copied to a terminal to au-
tomatically set up the experiment infrastructure (this process was
also used for the tutorial example). The experimental infrastructure
consisted of:

• Sun JDK 1.6.0-32
• Eclipse Indigo (3.7.2)
• The EVOSUITE Eclipse plugin
• An Eclipse workspace consisting of only the target project,

with the class under test opened in the editor. The workspace
for subjects performing manual testing was opened with an
empty skeleton test suite for the target class.

All subjects used machines of roughly the same hardware con-
figuration, booting Ubuntu Linux. As such, the technical setting for
each individual subject was identical.

The stated goal was to test the target class as thoroughly as pos-
sible using the time available, referring to its project JavaDoc doc-
umentation for a description of its intended behaviour. We did not
reveal the number of faults in a class to the subjects, but instructed
subjects that test cases which reveal a fault in the class under test
should fail. Subjects were told not to fix any of the code, unless the
changes were trivial and eased the discovery of further faults.

Subjects of the EVOSUITE group were asked to start by produc-
ing a test suite using the plugin, and to edit the test cases such that
they would fail if they revealed a fault on the class. They were also
instructed to delete tests they did not understand or like, and to add
new tests as they saw fit. As EVOSUITE uses a randomized search,
each subject using it began with a different starting test suite. Fur-
thermore, subjects working with EVOSUITE had to spend some of
their time waiting for its results.

We modified Eclipse so that each time the test suite was run (ini-
tiated by a button-click), a copy of the test suite was saved locally
and to a central storage point on the network for later analysis (pre-
sented in the following sections).

The subjects were given one hour to complete the assignment,
and we asked them to remain seated even if they finished their task
before the time limit. To be considered “finished”, we required
them to be certain that their test cases would a) cover all the code
and b) reveal all faults. All subjects continued to refine their test
suite until within 10 minutes of the end of study, as evidenced by
the recorded test suite executions.

Including tutorial and break, the duration of the experiment was
two hours. The task was completed under “exam conditions”, i.e.,
subjects were not allowed to communicate with others, or consult
with other sources to avoid introducing biases into the experimental
findings. Each subject was paid 15 GBP for their time and involve-
ment, and was asked to fill in an exit questionnaire before leaving.



2.4 Analysis of Results
Each subject in our study produced a sequence of test suites,

with each new test suite saved whenever the subject executed it via
Eclipse. These sequences are used to conduct our analysis, with the
final test suite produced by each subject being of particular interest.
For each test suite produced, we computed several metrics, specifi-
cally: statement, branch, and method coverage (using Cobertura1);
the number of tests which fail on the original, correct system; the
number of faults detected; the mutation score; and number of (non-
assertion) statements and assertions present in each test.

These statistics form the base from which subsequent statistical
analysis is done and our research questions are addressed. Sta-
tistical analysis was performed using the scipy and numpy Python
frameworks and the R statistical toolset.

To determine which of the five individual study faults were de-
tected by the test suites, for each class, each corresponding fault
was used to a create a separate version of that class. This results in
a total of six versions of each class for the analysis (five incorrect
and one correct). In the subsequent analysis we refer to the correct
version as the original version of the class. We then determined,
for each faulty version of a class, if there exists a test which passes
on the correct class, but fails on the faulty version.

The mutation score was computed by running the test suite us-
ing the MAJOR mutation framework, which automates the con-
struction of many single-fault mutants and computes the resulting
mutation score, i.e., the percentage of mutants detected by the test
suites [14]. Tests which fail on the correct system are ignored and
do not count towards the mutation score. (This was facilitated by
modifications to MAJOR performed by the tool’s author.) Note that
these failing tests are still included when calculating coverage.

Finally, the number of statements and assertions was computed
using automation constructed on top of the Eclipse Java compiler.

2.5 Threats to Validity
External: Many of our subjects are strictly students, and do not

have professional development experience. However, analysis of
the results indicated subjects did not appear to vary in effectiveness
according to programmer experience or student/professional sta-
tus. Furthermore, we see no reason why automatic test generation
should be useful only to developers with many years of experience.

The classes used in our study were not developed by the subjects
and may have been unfamiliar. However, in practice developers of-
ten must test the code of others, and as previously discussed, the
classes chosen were deemed simple enough to be understood and
tested within the time allotted through pilot studies. This is con-
firmed in the survey, where we asked subjects if they felt they had
been given enough time for the experiment. Only three subjects
strongly disagreed about having enough time, whereas 33 subjects
stated to have had enough time; there was no significant difference
between EVOSUITE users and manual testers on this question, in-
dicating there was sufficient time for both groups. Additionally, the
classes selected were relatively simple Java classes. It is possible
more complex classes may yield different results. As no previous
human studies have been done in this area, we believe beginning
with small scale studies (and using the results to expand to larger
studies) is prudent.

Our study uses EVOSUITE for automatic test generation. It is
possible using different automatic test generation tools may yield
different results. Nevertheless, EVOSUITE is a modern test genera-
tion tool, and its output (both in format and structural test coverage
1Note that Cobertura only counts conditional statements for branch
coverage, whereas the data given in Table 1 lists branches in the
traditional sense, i.e., edges of the control flow graph.

Table 2: Effect sizes for EVOSUITE results compared with
manual testing for the three study classes
When p-values are lower than 0.05, the effect size Â12 is highlighted in bold.

Variable Option Rational DocType
Â12 p-value Â12 p-value Â12 p-value

# failing tests on original 0.97 0.001 0.70 0.289 0.83 0.026
# of detected faults 0.31 0.165 0.43 0.738 0.50 -
Mutation score 0.65 0.321 0.37 0.530 0.22 0.065
% Statement coverage 1.00 0.001 0.79 0.109 0.37 0.399
% Branch coverage 1.00 0.001 0.64 0.431 0.19 0.040
% Method coverage 1.00 0.001 0.91 0.014 0.70 0.178

achieved) is similar to the output produced by other modern test
generation tools, such as Randoop [21], eToc [32], TestFul [3], Java
PathFinder [23], Dsc [13], Pex [31], JCrasher [4], and others.

Internal: Extensive automation is used to prepare the study and
process the results, including automatic mutation tools, tools for
automatically determining the faults detected over time, tools mea-
suring the coverage achieved by each test suite, etc. It is possible
faults in this automation could lead to incorrect conclusions.

To avoid a bias in the assignment of subjects to objects we used
a randomized assignment. Subjects without sufficient knowledge
of Java and JUnit may affect the results; to avoid this problem we
only accepted subjects with past experience (e.g., all undergrad-
uates at the University of Sheffield learn about JUnit and Java in
the first year), as confirmed by the background questionnaire, and
we provided the tutorial before the experiment. In addition, the
background questionnaire included a quiz question showing five
JUnit assertions, asking for each whether it would evaluate to true
or to false. On average, 79% of the answers were correct, which
strengthens our belief that the existing knowledge was sufficient
for the experiment. A further threat to internal validity may result
if the experiment objectives were unclear to subjects; to counter
this threat we thoroughly revised all our material, tested it on a pi-
lot study, and interacted with the subjects during the tutorial exer-
cise to ensure they understood the objectives. As each subject only
tested one class with one technique, there are no learning effects
that would influence our results.

Construct: We used automatically seeded faults to measure the
fault detection ability of constructed test suites. While evidence
supports that the detection of the class and distribution of faults
used correlates with the detection of real world faults, it is possible
the use of faults created by developers may yield different results.

Conclusion: We conducted our study using 49 subjects and three
Java classes. Thus for each combination of testing approach (EVO-
SUITE and manual) and Java class, six to nine subjects performed
the study. This is a relatively small number of subjects, but yields
sufficient statistical power to show an effect between testing ap-
proaches. Furthermore, the total number of test suites created over
the course of the study is quite high (over 1000), easily sufficient
for analysis examining the correlations between test suite charac-
teristics and fault detection effectiveness.

3. RESULTS
In answering our original research questions, we use only the fi-

nal test suite produced by each subject, as this represents the end
product of both the manual and tool-assisted testing processes. We
explore how the use of automated test generation impacts the evo-
lution of the test suite in Section 4.1.

The results are summarized in the form of boxplots in Figure 2,
with the outcome of statistical tests summarized in Table 2. The
Mann-Whitney U-test was used to check for statistical difference
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Figure 2: Test suite properties, comparing EVOSUITE against manual testing (boxes spans from 1st to 3rd quartile, middle lines mark
the median, whiskers extend up to 1.5× the inter-quartile range, while plus symbols represent outliers and stars signify the mean).

among the stochastic rankings of these two groups for each vari-
able, and the Vargha-Delaney Â12 statistic was used to calculate
standardized effect sizes. We also computed common statistics,
such as minimum, maximum, mean, median, standard deviation,
and kurtosis. For space reasons we do not exhaustively list these
values, but instead refer to them in our discussion as needed. There
is disagreement in the literature concerning which statistical tests
should be used and how to interpret their results; in this paper, we
follow the guidelines presented by Arcuri and Briand [2].

The data for three subjects was discarded, as one subject pro-
duced no test suites (for DocType), and two subjects ignored study
instructions and modified the class interface (for Rational). As
these modifications were not captured by the EVOSUITE plugin,
we could not analyze the resulting test suite.

After conducting the study, the analysis indicated unexpected re-
sults for DocType. Although per our class selection criterion, we
expected EVOSUITE would achieve high coverage with DocType,
the coverage values achieved by participants using EVOSUITE were
very low (as seen in Figure 2), no greater than 44%. Upon investi-
gation, we identified a configuration problem in EVOSUITE related
to how the Eclipse plugin constructed the classpath when launching
EVOSUITE during test generation; specifically, EVOSUITE could
not load the nu.xom.Verifier class. As it is possible to instanti-
ate DocType even without Verifier, EVOSUITE silently ignored this
problem. However, many of the methods of DocType indirectly de-
pend on Verifier, and calling such a method leads to a NoClassDef-
FoundError. Consequently, EVOSUITE produced many test cases
for DocType similar to the following:

public void test0() {
String string0 = ...;
DocType docType0 = ...;
try {

docType0.setInternalDTDSubset(string0);
fail ("Expecting exception: NoClassDefFoundError");

} catch(NoClassDefFoundError e) {
// Could not initialize class nu.xom.Verifier

}

This explains the simultaneous high method coverage and low state-
ment/branch coverage achieved over this class. This configuration
problem only affected EVOSUITE, not Eclipse itself, and conse-
quently these test cases would fail when executed in Eclipse, as the
NoClassDefFoundError would not occur.

Interestingly, none of the subjects noted this issue, and the exper-
iment was conducted as planned. The results on DocType therefore
do not represent the standard behaviour of EVOSUITE. However,
they do represent an interesting case: what happens if the test gen-
eration tool produces bad or misleading test cases? We therefore
decided to keep the data set.

RQ1: Structural Code Coverage Achieved
As seen in Figure 2(a–c), for both Option and Rational, the use
of EVOSUITE improves code coverage for every structural cover-
age criteria used. The relative increases in median coverage range
from 9.4% in the case of branch coverage for Rational, to 300%—
a threefold increase—for branch coverage for Option. Indeed, the
improvement in coverage when testing Option with the aid of EVO-
SUITE is particularly substantial: the minimum coverage achieved
with EVOSUITE derived test suites is 80.0% and 90.48% for branch
and method coverage, while the maximum coverage achieved by
any subject working without EVOSUITE is 35.71% and 73.81%,
indicating nearly all the coverage achieved during testing is likely
due to automatically generated tests.

Considering the standardized effect sizes and the corresponding
p-values in Table 2, results for Option are as strong as possible
(Â12 = 1 and p-value close to 0.0). For Rational, there are strong
effect sizes (from 0.69 to 0.94), but sample sizes were not large
enough to obtain high confidence in statistical difference for branch
coverage (p-value equal to 0.247).

The results for Option and Rational matched our expectations:
the development of automatic test generation tools has long fo-
cused on achieving high structural coverage, and the high coverage
achieved here mirrors results found in previous work on a num-
ber of similar tools. For DocType, however, the use of EVOSUITE
results in considerably lower branch coverage, with a relative change



in the median branch coverage of -42.12% (though method cover-
age tends to be slightly higher). As discussed above, this is due
to a configuration error; given that EVOSUITE typically achieves
around 80% branch coverage within one minute over DocType, we
expect that the behavior observed over the Rational and Option
classes would also apply on DocType under normal circumstances.

Nevertheless, we conclude that in scenarios suited to automated
test generation, generated test suites do achieve higher structural
coverage than those created by manual testers.

RQ1: Automatically generated test suites achieve higher
structural coverage than manually created test suites.

RQ2: Faults Detected
For all three classes, there is no case in which the ability of subjects
to detect faults improves by using EVOSUITE, and in fact detection
often slightly decreases. For example, from Figure 2(f) we see Op-
tion shows a slight benefit when using manual testing, with average
fault detection of 0.89 compared to 0.38 (effect size 0.31). For Ra-
tional the data show that manually created test suites detect 2.33
faults versus the 2.12 detected with test suites derived with EVO-
SUITE (effect size 0.46). However, test suites created for DocType
find on average the exact same number of faults, 1.0 (effect size
0.5). In no case are the differences in fault detection statistically
significant at α = 0.05, as the lowest p-value is equal to 0.165
(for Option). A larger sample size (i.e., more subjects) would be
needed to obtain more confidence to claim that EVOSUITE actually
is worse than manual testing.

RQ2: Using automatically generated test suites
does not lead to detection of more faults.

Of the results found, this is perhaps the most surprising. Auto-
mated test generation tools generate large numbers of tests, freeing
testers from this laborious process, but also forcing them to ex-
amine each test for correctness. Our expectation was that either
testers would be overwhelmed by the need to examine and verify
the correctness of each test, and thus be largely unable to make the
necessary changes to the test to detect faults, or, that testers would
be relatively effective in this task, and, free from the need to create
their own test inputs, could detect faults more efficiently.

To determine if this behavior stems from the generation of poor
tests suites by EVOSUITE, we examined how many faults subjects
could have found using generated tests given the right changes to
the test assertions. To estimate this, we looked at the initial test
suites generated by EVOSUITE. We assume that a test suite can po-
tentially reveal a fault if there exists a test which passes on the class
with the fault, and fails on the original, correct class (i.e., there is
a test where an assertion, if corrected, would reveal the fault). On
average, test suites for Option could reveal 3.0 faults, test suites for
Rational 2.86 faults, and test suites for DocType 2.6. Consequently,
it would have been possible for subjects using EVOSUITE to find
more faults than manual testers if they had identified and fixed all
incorrect assertions. We take a closer look at the influence of asser-
tions and how they vary when using EVOSUITE in Section 4.2.

RQ3: Tests Mismatching the Specification
For all three classes, the number of tests failing on the original ver-
sion (i.e., the version of the class without the seeded faults) is larger
when EVOSUITE is used (cf. Figure 2(d)). Each failing test repre-
sents a misunderstanding in how the class should operate, mani-
fested as an incorrect assertion. For Option, the number increases
from 1.22 on average for manually written tests to 8.5 for partic-
ipants using EVOSUITE; for Rational the number increases from
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Figure 3: Average number of test cases failing on the original,
correct version of the class. EVOSUITE users are shown with
dark gray solid lines, manual testers light gray dashed lines.

2.8 to 5.14; and for DocType the number increases from 0.75 to
2.5. The increase is statistically significant for Option (p = 0.001)
and DocType (p = 0.026), whereas Rational (p = 0.289) would need
a larger sample size to achieve significance.

Naturally, we expect several failing tests in the initial test suite
when using EVOSUITE: assertions produced by EVOSUITE reflect
the behaviour of the class they are generated from, which in the
study is faulty. Over time, as the test suite evolves, we expected
these failing tests to be corrected. However, Figure 3 shows that
this is not the case; the number of incorrect tests remains fairly
constant for both EVOSUITE users and manual testers, and even
slightly increases for EVOSUITE users (due to Option).

The persistent number of failing tests may occur because testers
struggle to understand the generated tests, or because in general
testers struggle to correct failing tests, and the generation process
merely exacerbates this. In any case, the existence of failing tests
represents a potential drain on time, as these tests may fail to catch
faults in the program or may signal the existence of a fault where
none exists, both undesirable outcomes.

RQ3: Automatically generated test cases have a negative effect
on the ability to capture intended class behaviour.

RQ4: Regression Fault Detection
We estimate the ability of subjects’ test suites to find regression
faults by examining the mutation score achieved. In contrast to the
results for RQ2, the results for RQ4 are mixed: the ability of sub-
jects to construct test suites capable of detecting faults later intro-
duced in the class under test is impacted by the use of EVOSUITE,
but only for one class. As shown in Figure 2(e), when performing
regression testing over Option, test suites derived from EVOSUITE
detect, on average, 51.46% of mutants as compared to 37.82% de-
tected by manual testing alone. This indicates that the much higher
structural coverage achieved over this class, while apparently not
beneficial at detecting existing faults in it, nevertheless does help
improve the ability to detect mutants later introduced.

However, for the other two classes, Rational and DocType, test
suites constructed with EVOSUITE seem to perform worse. For
Rational, manually created test suites killed on average 72.92%
of generated mutants, a rather consistent improvement over the
60.56% of mutants found by the EVOSUITE derived test suites. For
DocType, 56.50% and 46.65% of mutants were killed by manually
created and EVOSUITE generated test suites, respectively. In both
cases, however, the most effective test suite was created by a subject
using EVOSUITE (note the outliers in Figure 2(e)). Only for Doc-
Type there is enough evidence to claim results can be statistically
significant (p-value equal to 0.065), though this is influenced by the
configuration problem discussed earlier.
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Figure 4: Test suite evolution for Rational. EVOSUITE users shown in light gray solid lines, manual testers dark gray dashed lines.

We hypothesize that to some extent this difference among classes
is due to the difference in method coverage achieved over Option:
as noted previously, we selected independent faults to be part of
each class, and some methods do not contain faults. During mu-
tation testing, these methods are mutated, and the tests generated
by EVOSUITE targeting these methods—which are correct, as the
methods themselves are correct—will detect these mutants. As
manually created test suites may not cover these methods, they
cannot detect these mutants. In contrast, for both Rational and
DocType, test suites manually created or derived using EVOSUITE
achieved similar levels of method coverage, and this behavior is
thus absent. Our results for RQ4 thus reflect previous empirical
studies relating structural coverage and mutation scores—higher
structural coverage roughly corresponds to higher levels of muta-
tion detection ability [20].

On the whole, these results indicate that the use of automatic
test generation tools may offer improvements in regression testing
in scenarios where testers struggle to manually generate sufficient
tests to cover a system. However, the relationship between cover-
age and mutation score is clearly not as strong as found in previ-
ous studies (where correlations above 0.9 were common) highlight-
ing the impact of the tester in constructing effective regression test
suites [20]. For example, although on Rational the coverage values
are higher for EVOSUITE, its mutation score is lower.

We provide two possible conjectures why manual testers achieved
higher mutation scores with similar coverage. First, consider again
the results from RQ2 and RQ3: users of EVOSUITE produced more
tests failing on the original version of a class than manual testers.
Although a failing test still contributes towards code coverage, it
cannot detect any mutants by definition (mutation analysis assumes
that the tests pass on the original version of the class). Conse-
quently, the mutation score is based on only the passing subset
of the produced test cases. It is therefore likely that if users had
managed to correct more assertions, the mutation score of the EVO-
SUITE tests would have been significantly higher.

Second, it is possible that the assertions generated by EVOSUITE
are weaker than those written by manual testers. Both conjectures
imply that assertion generation is in strong need of further research.

RQ4: Automated test generation does not guarantee higher
mutation scores.

4. DISCUSSION
Our results indicate that while the use of automated test gener-

ation tools can improve structural coverage over manual testing,
this does not appear to improve the ability of testers to detect cur-
rent or future regression faults. These results highlight the need to
improve automated test generation tools to be capable of achiev-
ing not just higher structural coverage, but also better fault finding
when actually used by testers. To accomplish this, we require a
better understanding of how the testing process is influenced by the
use of automated testing tools. Based on the observations made in
the previous section, we further explore how the use of automated
test generation impacts testing effectiveness and discuss implica-
tions for future work in automated test generation.

4.1 Evolution of a Test Suite
As shown previously, even when given tests which were largely

the same and unhelpful, subjects largely used the test suite pro-
duced by EVOSUITE, resulting in test suites with considerably less
coverage (though surprisingly, similar fault detection effectiveness)
than manually produced test suites.

This highlights that beginning the testing process with an au-
tomated testing tool is not a simple boost, a pure benefit with no
downsides. Instead, the use of these tools results in the creation of
a different starting point for testing from that of traditional man-
ual testing, one which changes the tasks the tester must perform
and thus influences how the test suite is developed. Understanding
the differences in how a test suite evolves during testing with re-
spect to the starting point may suggest how automated testing tools
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Figure 5: Test suite evolution for DocType. EVOSUITE users shown in light gray solid lines, manual testers dark gray dashed lines.

can better serve testers. Towards this, in Figures 4 and 5, we illus-
trate how test suites change over time for the Rational and DocType
classes, illustrating the branch coverage achieved, the number of
EVOSUITE-derived tests, the number of user-created tests, and the
number of study faults detected. (Option displays behavior similar
to Rational.) Each line represents a single subject’s test suite over
time; dark gray dashed lines represent manually constructed test
suites, while lighter solid lines represent EVOSUITE derived test
suites.

First, consider the data related to Rational (Figure 4). EVOSUITE
assisted subjects begin with a test suite achieving high coverage,
which they then must begin to manually verify and understand.
We see after 20–30 minutes these testers begin testing in earnest—
having spent roughly three minutes per generated test understand-
ing their starting point—with resulting fluctuations in branch cov-
erage, a decrease in EVOSUITE derived tests2 (though most of these
tests are retained) and a corresponding uptick in the number of
added tests to around five, though two testers create even more tests
than some of those manually testing the system.

In contrast, unassisted testers have no need to understand or mod-
ify any generated tests. These subjects exhibit an immediate, lin-
ear increase in the number of tests created, with a rapid increase
in branch coverage approaching (but not quite achieving) that of
EVOSUITE derived test suites within 40 minutes. Thus while in the
end, all subjects produced final test suites performing well in terms
of coverage and fault detection, the path to these effective test suites
varies considerably depending on the process used.

To quantify this dichotomy, we computed the Spearman corre-
lation of the number of user and EVOSUITE created tests against
fault detection. For EVOSUITE derived test suites, we found that
test suite size has a moderate, positive correlation with fault de-
tection (0.45). However, the number of user created tests has a

2We use the method names of tests originally produced by EVO-
SUITE to determine whether a test case has been added or deleted.

stronger relationship with fault detection (0.72), while the num-
ber of EVOSUITE derived tests has a moderate negative correlation
(-0.50), highlighting the need to evolve the test suite. Branch cov-
erage, surprisingly, has a weak relationship with fault detection (-
0.21). When manual testing, however, both branch coverage and
test suite size have a strong relationship with bug detection (0.79),
as previous work suggests [20].

Now consider the data related to DocType (Figure 5). Despite
the issues with this class discussed in Section 3, the behavior here
is similar. Subjects using EVOSUITE tend to delete tests much ear-
lier than manual testers for Rational, dropping 5-10 tests within the
first 10 minutes, but are on the whole unwilling to scrap the entire
test suite. Again, after about 30–40 minutes, changes in the number
of EVOSUITE derived tests, the number of user created tests, and
branch coverage occur, though as with Rational, for most subjects
the coverage increases only slightly (or decreases) and few new
tests are created. Manual testers again start immediately, and after
30 minutes they have created 5–15 tests, achieving greater cover-
age than most subjects using EVOSUITE achieve during the entire
experiment (though all subjects struggle to achieve high coverage).
Spearman correlations (not shown) again reflect this, albeit not as
strongly.

The problem here is that, unlike Rational, the starting point of-
fered by EVOSUITE is terrible in terms of both coverage and test
quality, but users nevertheless appear to invest the majority of their
effort into making use of this test suite. While both groups of sub-
jects ultimately achieve similar levels of fault finding (one fault de-
tected), we believe this is more a consequence of the relative dif-
ficultly of testing DocType, and note as shown in Figure 2 that the
mutation score for manual test suites is roughly 10% greater than
those for EVOSUITE derived test suites.

Based on this, we can clearly see that when using automatic test
generation tools, the starting point given to testers in the form of
the test suite generated is where they tend to stay. Even very bad
test suites require time for testers to understand before they can



Table 3: Correlation of Mean Number of Assertions with Fault
Detection, Using Subjects’ Final Test Suites
“MA” is the mean number of assertions, “GMK” is the number of generated mutants
that were killed, “SFD” is the number of study faults detected. Correlations not statis-
tically significant at α = 0.05 are denoted with an asterisk.

EVOSUITE Testing Manual Testing
SFD GMK SFD GMK

Option MA -0.06* 0.19 0.26 0.10*
Rational MA -0.65 -0.73 0.30 0.35
DocType MA -0.12* 0.05* 0.17 0.17

begin to repair them, and following this they are loath to replace
them completely. This stickiness, which naturally does not exist
during manual test suite construction, is cause for concern. Strong
evidence exists that, in many, perhaps most cases, automatic test
generation performs poorly in terms of coverage [7, 17]. If testers
struggle to improve and correct poor generated test suites, the use
automatic generation tools may be a drag on the testing process.

4.2 Influence of Assertions
In Section 3, we noted that EVOSUITE generated tests capable of

detecting faults, if subjects could understand and correct the asser-
tions. One possible explanation why subjects failed to correct these
assertions is a problem in the generated test cases. According to the
exit survey, subjects were happy about the length and readability of
the test cases, and they agreed that confirming the correctness of
an assertion is easier than writing an assertion for a generated test
case. However, while they thought that EVOSUITE chose good as-
sertions, they often stated that it chose too many assertions.

To understand how EVOSUITE generated assertions differed from
those of manual testers, we examined the number of assertions per
test for both sets of subjects, and computed the Spearman correla-
tion of the number of assertions constructed and the fault finding
effectiveness. These results are listed in Table 3 and Figure 6.

We can see from Figure 6 subjects performing manual testing do
in fact tend to construct fewer assertions, producing an average of
1.44 to 1.68 assertions per test, versus the 1.41 to 4.9 assertions per
test present in test suites derived from EVOSUITE. In the case of
Option and Rational, testers examining EVOSUITE tests must in-
spect up to 2–3 times more generated assertions than they typically
chose to construct, a potentially large increase in effort.

Furthermore, from Table 3 we see that when manually testing
Rational (the only case in which the number of assertions con-
structed by manual testers exhibits variation) the mean number of
assertions per test suite has a positive (albeit low/moderate) corre-
lation with mutation score and bug detection (0.30 and 0.35). How-
ever, when using EVOSUITE to test Rational, the mean number of
assertions has a moderate, negative correlation with effectiveness
(-0.65 and -0.73). Thus as EVOSUITE derived test suites evolve
to become more effective, extraneous tests/assertions are dropped
and replaced with tests using a smaller number of assertions. This
hints that it may be possible to replace the relatively large num-
ber of generated assertions with a smaller number of more targeted
assertions, with no decrease in fault detection effectiveness.

Note another possibility exists concerning why subjects failed
to correct assertions: a problem in understanding the class under
test and its specification. Indeed, the subjects using EVOSUITE
consistently felt that the difficulty in understanding generated unit
tests depended more on the complexity of the class, not the ac-
tual tests. Only for Rational, the smallest class, did subjects using
EVOSUITE feel testing was easier than subjects manually testing.
Considering that subjects were more effective at fixing assertions
for Rational than other classes, it seems that the more difficult a
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Figure 6: Number of assertions per test (each box spans from
1st to 3rd quartile, middle line marks the median, whiskers ex-
tend up to 1.5× the inter-quartile range, while plus symbols
represent outliers and stars signify the mean).

class is to understand, the more difficult it becomes to successfully
apply an automated test generation tool. Developing methods of
selecting assertions to mitigate this issue seems key to producing
generated test suites which testers feel comfortable using.

4.3 Implications for Future Work

4.3.1 Earn the Trust of Testers
As discussed in the previous two subsections, even given terri-

ble generated tests, most testers still invest a significant amount of
effort in understanding and attempting to repair the tests. In short,
testers trust these tools, much as they trust their compiler. How-
ever, as evidenced by DocType and previous empirical studies, this
trust is misplaced. These tools have been developed to provide a
test suite using a best-effort approach, and thus will always present
the user with a test suite—even when the quality of the test suite
(in terms of coverage, etc.) is quite poor. Over time, testing tools
which require significant effort from testers but which only some-
times repay that effort seem likely to be discarded, as testers learn
to not trust the tool and invest their time elsewhere (in this case,
manual test development).

We therefore believe developers of automatic test generation tools
must develop strong methods of culling their test suites, presenting
only tests and groups of tests which are very likely to repay the ef-
fort required to understand them. Thus we need not only the ability
to generate test suites, but also to assess our confidence in them
before presenting them to testers. In particular, methods of deter-
mining when the tool is performing well or poorly appear to be
needed. If EVOSUITE was capable of, for example, distinguishing
the quality of the test suites generated for Option and DocType—
either by coverage, or mutation score, or by detecting configuration
errors—testers could be spared useless test suites while still gaining
the benefits of EVOSUITE when those benefits are present. Given
previous results indicating that situations similar to DocType occur
frequently in practice [7], such a method seems a necessary step
towards creating trustworthy test generation tools.

Naturally, part of improving our ability to generate tests which
testers trust is adapting our test generation techniques to create
more understandable tests. This need has been established in the
testing research literature (e.g., [1, 9, 10, 24]) and underscored by
our study’s results; however, to the best of our knowledge no hu-
man subject study has been conducted to determine what factors
impact human understanding of tests. In lieu of this, researchers
have developed ad-hoc metrics for quantifying user understanding,



in particular assuming that test length and the number methods in-
voked correspond to user understanding. While these metrics ap-
pear to be intuitively sensible, given the importance of accurately
predicting test understanding, human subject studies examining the
relationship between these proposed factors and test understanding
are warranted.

4.3.2 High Test Coverage is Not the Goal
Much of the work in test case generation focuses on improving

structural test coverage under the assumption that improving cov-
erage is the key to improving test generation effectiveness. While
this is inevitably partly true—we cannot detect faults in unexecuted
code—our results indicate that at best a moderate relationship be-
tween test coverage and fault detection is present (correlation gen-
erally less than 0.6). From this we infer two implications. First
this underscores the need for continual user studies, since we have
no effective proxy measure for determining if a tool will be effec-
tive when used by users. Mechanically evaluating automatic test
generation tools, without user studies, increases the likelihood of
forming misleading or incorrect conclusions.

Second, this highlights the need for carefully considering how
assertions are generated during test generation. We must execute
incorrect code in order to detect faults, but without an effective
test oracle, detection remains unlikely. Indeed, previous work has
demonstrated that careful consideration of how the test oracle is
selected can increase the detection of faults [29], and based on our
results we believe additional work focused on improving test oracle
selection is needed.

4.3.3 User Suggestions
As part of the survey, subjects were given the chance to provide

feedback and suggestions on improving EVOSUITE and automated
test generation. Several subjects not using EVOSUITE commented
that they would like to use an automated tool, in particular to test
getters/setters and other trivial pieces of code. As one subject put it,
test generation tools would be great to take over the “boring” parts
of testing.

Subjects using EVOSUITE listed a number of concrete sugges-
tions on how to improve unit test generation. The suggestion given
most frequently (by seven subjects) was that automatically gener-
ated test cases need a short comment explaining what they do. An
additional frequent suggestion was to reduce the number of asser-
tions per test. In particular, if one test has several assertions it might
even be better to split it up into several tests with fewer assertions.

An interesting suggestion was to prioritize test cases by their im-
portance to avoid the problem of “1000 tests without structure”,
although of course the question what makes a test case important
is not easy to answer. Finally, subjects using EVOSUITE were gen-
erally happy about the readability, and several subjects explicitly
commended it. However, there were a couple of useful sugges-
tions on how to improve the tests, in particular by changing variable
and method naming as well as value choices to something closer to
what manual testers would choose.

5. RELATED WORK
Although controlled human studies are not common in software

engineering, there has been some recent work evaluating techniques
with users (e.g., [26]), and not always with positive results. Parnin
and Orso [22] conducted a study to determine if debugging tech-
niques based on statement ranking help to locate bugs quicker.
They found that significant improvements in speed were “limited to
more experienced developers and simpler code”. Staats et al. [30]
conducted a study to investigate if dynamic invariant generation

tools are helpful, e.g. in creating automated oracles. Thirty subjects
were asked to classify automatically generated invariants as correct
or incorrect. Unfortunately, subjects “misclassified 9.1− 39.8% of
correct invariants and 26.1− 58.6% of incorrect invariants”, “call-
ing into question the ability of users to effectively use generated
invariants”.

One study addressing the question of how automated testing tools
compare to manual testing was carried out by Ramler et al. [25],
involving 48 subjects. The fault detection of manually written test
cases was compared with randomly-generated test cases using Ran-
doop. Fault detection rates were found to be similar, although the
techniques revealed different kinds of faults.

The EVOSUITE tool is based on the use of metaheuristic search
algorithms [6], e.g., genetic algorithms, which have achieved sev-
eral “human competitive” results (e.g., for genetic programming
[16]). While the application of search-based algorithms in software
engineering (SBSE) has been increasing in the last few years [11],
there have only been a few studies involving human subjects and
SBSE. Pastore et al. [24] used crowdsourcing to verify the cor-
rectness of assertions generated with EVOSUITE against JavaDoc
documentation, but unlike our study the source code of the tested
classes was not shown to participants. In this study, the human
participants (crowd-workers) performed well at this task, but only
as long as the documentation and tests were both readable and un-
derstandable. Afshan et al. [1] also used crowdsourcing to eval-
uate the readability of test cases involving string inputs produced
with another search-based testing tool, IGUANA. Finally, Souza et
al. [5] compared the solutions generated with search-based tech-
niques against those constructed by humans, concluding that SBSE
was capable of generating solutions of higher quality and, of course,
in less time.

6. CONCLUSIONS
Beginning with earliest attempts at automated test data genera-

tion in the 70s, the assumption has been even partial automation of
the testing process yields a net benefit. Initially, test data generation
explicitly assumed that test data would be analyzed manually [19],
although later work distinguishes between the availability of an au-
tomated test oracle and manual test oracles [33]. Successive work
on white-box test generation has frequently ignored the question of
using the test data after generation, and focused on the technically
challenging aspects of test generation.

Our study reveals that merely automatically generating a set of
test cases, even high coverage test cases, does not necessarily im-
prove our ability to test software. This result can be seen as a call to
arms to the software testing research community. It is time for soft-
ware testing research to consider the follow-up problem to white-
box test data generation: once we have generated our test data, how
should the developer use it?

In order to facilitate reproduction of our study and future studies
in software testing, we provide all experimental material of this
study as well as EVOSUITE on our Web site:

http://www.evosuite.org/study
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